Skip to main content

Syntactic Approach to Predict Membrane Spanning Regions of Transmembrane Proteins

  • Conference paper
Applications of Evolutionary Computing (EvoWorkshops 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3449))

Included in the following conference series:

  • 1522 Accesses

Abstract

This paper exploits “biological grammar” of transmembrane proteins to predict their membrane spanning regions using hidden Markov models and elaborates a set of syntactic rules to model the distinct features of transmembrane proteins. This paves the way to identify the characteristics of membrane proteins analogous to the way that identifies language contents of speech utterances by using hidden Markov models. The proposed method correctly predicts 95.24% of the membrane spanning regions of the known transmembrane proteins and correctly predicts 79.87% of the membrane spanning regions of the unknown transmembrane proteins on a benchmark dataset.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Wallin, E., von Heijne, G.: Genome-wide analysis of integral membrane proteins from eubacterial archaean, and eukaryotic organisms. Protein Sci. 7, 1029–1038 (1998)

    Article  Google Scholar 

  2. Krogh, A., et al.: Predicting transmembrane protein topology with a hidden Markov model: Application to complete genomes. J. Mol. Biol. 305, 567–580 (2001)

    Article  Google Scholar 

  3. White, H.W., Wimley, C.W.: Membrane protein folding and stability: Physical principles. Annu. Rev. Biophys. Biomol. Struct. 28, 319–365 (1999)

    Article  Google Scholar 

  4. Kyte, J., Doolittle, R.F.: A simple method for displaying the hydropathic character of a protein. J. Mol. Biol. 157, 105–132 (1982)

    Article  Google Scholar 

  5. von Heijne, G.: The distribution of positively charged residues in bacterial inner membrane proteins correlates with the transmembrane topology. EMBO J. 5, 3021–3027 (1986)

    Google Scholar 

  6. von Heijne, G.: Membrane protein structure prediction: Hydrophobicity analysis and the positive inside rule. J. of Mol. Bio. 225(2), 487–494 (1992)

    Article  Google Scholar 

  7. Claros, M.G., von Heijne, G.: TopPred II: An improved software for membrane protein structure predictions. Computer Applications in the Biosciences 10(6), 685–686 (1994)

    Google Scholar 

  8. Moller, S., et al.: Evaluation of methods for the prediction of membrane spanning regions. Bioinformatics 17(7), 646–653 (2001)

    Article  Google Scholar 

  9. Sonnhammer, E.L.L., et al.: A Hidden Markov Model for Predicting Transmembrane Helices in Protein Sequences. Proc. on Intelligent Systems in Mol. Biology 6, 175–182 (1998)

    Google Scholar 

  10. Tusnady, G.E., Simon, I.: Principles governing amino acid composition of integral membrane proteins: Applications to topology prediction. J. of Mol. Bio. 283, 489–506 (1998)

    Article  Google Scholar 

  11. Jones, D.T., et al.: A model recognition approach to the prediction of all helical membrane protein structure and topology. Biochemistry 33, 3038–3049 (1994)

    Article  Google Scholar 

  12. Rost, B., et al.: Topology prediction for helical transmembrane proteins at 86% accuracy. Protein Science 5, 1704–1718 (1996)

    Article  Google Scholar 

  13. Fariselli, P., et al.: MaxSubSeq: An algorithm for segment-length optimization. The case study of the transmembrane spanning segments. Bioinformatics. 19(4), 500–505 (2003)

    Google Scholar 

  14. Jayasinghe, S., et al.: MPtopo: A database of membrane protein topology. Protein Science 10, 455–458 (2001)

    Article  Google Scholar 

  15. Ikeda, M., et al.: TMPDB: a database of experimentally-characterized transmembrane topologies. Nucleic Acids Research 31(1), 406–409 (2003)

    Article  Google Scholar 

  16. Melen, K., et al.: Reliability measures for membrane protein topology prediction algorithms. J. Mol. Biol. 327, 735–744 (2003)

    Article  Google Scholar 

  17. Grundy, W.N.: Modelling Biological Sequences Using HTK. Technical Report, prepared for Entropic Research Laboratory, Inc. (1997)

    Google Scholar 

  18. Young, S. J., et al.: Token Passing: a conceptual model for connected speech recognition systems. CUED Technical Report F_INFENG/TR38, Cambridge University (1989)

    Google Scholar 

  19. Rabinar, L.R.: A tutorial on hidden Markov models and selected applications in speech recognition. Proceedings of the IEEE 77(2), 257–286 (1989)

    Article  Google Scholar 

  20. Young, S., et al.: The HTK book (for HTK version 3.2.1). Cambridge university Engineering Department (2002)

    Google Scholar 

  21. Moller, S., et al.: A collection of well characterised integral membrane proteins. Bioinformatics 16(12), 646–653 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Pulasinghe, K., Rajapakse, J.C. (2005). Syntactic Approach to Predict Membrane Spanning Regions of Transmembrane Proteins. In: Rothlauf, F., et al. Applications of Evolutionary Computing. EvoWorkshops 2005. Lecture Notes in Computer Science, vol 3449. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-32003-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-32003-6_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-25396-9

  • Online ISBN: 978-3-540-32003-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics