Skip to main content

A Direct Algorithm to Find a Largest Common Connected Induced Subgraph of Two Graphs

  • Conference paper
Graph-Based Representations in Pattern Recognition (GbRPR 2005)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 3434))

Abstract

We present a direct algorithm that computes a largest common connected induced subgraph of two given graphs. It is based on an efficient generation of the common connected induced subgraphs of the input graphs. Experimental results are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rosen, K.: 8: Graph theory, 9: Trees. In: Rosen, K. (ed.) Handbook of discrete and combinatorial mathematics, pp. 495–628. CRC Press, Boca Raton (2000)

    Google Scholar 

  2. Koch, I., Lengauer, T., Wanke, E.: An algorithm for finding common subtopologies in a set of protein structures. J. Comput. Biol. 3, 289–306 (1996)

    Article  Google Scholar 

  3. Koch, I., Lengauer, T.: Detection of distant structural similarities in a set of proteins using a fast graph based method. In: Gaasterland, T., Karp, P., Karplus, K., Ouzounis, C., Sander, C., Valencia, A. (eds.) Proc. 5th Int. Conf. on Intelligent systems for molecular biology, Menlo Park, pp. 167–178. AAAI Press, Menlo Park (1997)

    Google Scholar 

  4. Raymond, J., Gardiner, E., Willett, P.: Heuristics for similarity searching of chemical graphs using a maximum common edge subgraph algorithm. J. Chem. Inf. Comput. Sci. 42, 305–316 (2002)

    Google Scholar 

  5. Raymond, J., Gardiner, E., Willett, P.: RASCAL: calculation of graph similarity using maximum common edge subgraphs. Comp. J. 45, 632–643 (2002)

    Article  Google Scholar 

  6. Garciá, G., Ruiz, I., Gómez-Nieto, M.: Step-by-step calculation of all maximum common substructures through a constraint satisfaction based algorithm. J. Chem. Inf. Comput. Sci. 44, 30–41 (2004)

    Google Scholar 

  7. Cuissart, B., Touffet, F., Crémilleux, B., Bureau, R., Rault, S.: The maximum common substructure as a molecular depiction in a supervised classification context: experiments in quantitative structure/biodegradability relationships. J. Chem. Inf. Comput. Sci. 42, 1043–1052 (2002)

    Google Scholar 

  8. Garey, M., Johnson, D.: Computers and Intractability: a guide to the theory of NP-completeness. Freeman, New York (1979)

    MATH  Google Scholar 

  9. Koch, I.: Enumerating all connected maximal common subgraphs in two graphs. Theor. Comput. Sci. 250, 1–30 (2001)

    Article  MATH  Google Scholar 

  10. Cormen, T., Leiserson, C., Rivest, R., Stein, C.: 22. Elementary graph algorithms. In: Introduction to algorithms. McGraw-Hill, New York (2001)

    Google Scholar 

  11. Bunke, H., Foggia, P., Guidobaldi, C., Sansone, C., Vento, M.: A comparison of algorithms for maximum common subgraph on randomly connected graphs. In: Caelli, T.M., Amin, A., Duin, R.P.W., Kamel, M.S., de Ridder, D. (eds.) SPR 2002 and SSPR 2002. LNCS, vol. 2396, pp. 123–132. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  12. Conte, D., Guidobaldi, C., Sansone, C.: A comparison of three maximum common subgraph algorithms on a large database of labeled graphs. In: Hancock, E.R., Vento, M. (eds.) GbRPR 2003. LNCS, vol. 2726, pp. 130–141. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  13. Foggia, P., Sansone, C., Vento, M.: A database of graphs for isomorphism and subgraph isomorphism benchmarking. In: Proc. 3rd IAPR TC-15 GbR Worshop, pp. 176–187 (2001)

    Google Scholar 

  14. DeSanto, M., Foggia, P., Sansone, C., Vento, M.: A large database of graphs and its use for benchmarking graph isomorphism algorithms. Pattern Recogn. Lett. 24, 1067–1079 (2003)

    Article  Google Scholar 

  15. Ullman, J.: An algorithm for subgraph isomorphism. Journal of the Association for Computing Machinery 23(1), 31–42 (1976)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cuissart, B., Hébrard, JJ. (2005). A Direct Algorithm to Find a Largest Common Connected Induced Subgraph of Two Graphs. In: Brun, L., Vento, M. (eds) Graph-Based Representations in Pattern Recognition. GbRPR 2005. Lecture Notes in Computer Science, vol 3434. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-31988-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-31988-7_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-25270-2

  • Online ISBN: 978-3-540-31988-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics