We describe a new tool called Csp-Prover which is an interactive theorem prover dedicated to refinement proofs within the process algebra Csp. It aims specifically at proofs for infinite state systems, which may also involve infinite non-determinism. Semantically, Csp-Prover supports both the theory of complete metric spaces as well as the theory of complete partial orders. Both these theories are implemented for infinite product spaces. Technically, Csp-Prover is based on the theorem prover Isabelle. It provides a deep encoding of Csp. The tool’s architecture follows a generic approach which makes it easy to adapt it for various Csp models besides those studied here: the stable failures model \(\mathcal{F}\) and the traces model \(\mathcal{T}\).


Process Algebra Proof Obligation Trace Model Recursive Process Industrial Case Study 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Basten, T., Hooman, J.: Process algebra in PVS. In: Cleaveland, W.R. (ed.) TACAS 1999. LNCS, vol. 1579, pp. 270–284. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  2. 2.
    Bergstra, J., Ponse, A., Smolka, S.: Handbook of Process Algebra. Elsevier, Amsterdam (2001)zbMATHGoogle Scholar
  3. 3.
    Buth, B., Kouvaras, M., Peleska, J., Shi, H.: Deadlock analysis for a fault-tolerant system. In: Johnson, M. (ed.) AMAST 1997. LNCS, vol. 1349, pp. 60–75. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  4. 4.
    Buth, B., Peleska, J., Shi, H.: Combining methods for the livelock analysis of a fault-tolerant system. In: Haeberer, A.M. (ed.) AMAST 1998. LNCS, vol. 1548, pp. 124–139. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  5. 5.
    Buth, B., Schrönen, M.: Model-checking the architectural design of a fail-safe communication system for railway interlocking systems. In: Woodcock, J.C.P., Davies, J., Wing, J.M. (eds.) FM 1999. LNCS, vol. 1709, p. 1869. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  6. 6.
    Camilleri, A.: Combining interaction and automation in process algebra verification. In: Goos, G., Hartmanis, J. (eds.) TAPSOFT 1991. LNCS, vol. 494, pp. 283–295. Springer, Heidelberg (1991)Google Scholar
  7. 7.
    Clarke, E.M., Schlingloff, H.: Model checking. In: Robinson, A., Voronkov, A. (eds.) Handbook of Automated Reasoning. Elsevier, Amsterdam (2001)Google Scholar
  8. 8.
    Dutertre, B., Schneider, S.: Using a PVS embedding of CSP to verify authentication protocols. In: Gunter, E.L., Felty, A.P. (eds.) TPHOLs 1997. LNCS, vol. 1275, pp. 121–136. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  9. 9.
    Gimblett, A., Roggenbach, M., Schlingloff, H.: Towards a formal specification of an electronic payment system in Csp-Casl. In: Fiadeiro, J.L., Mosses, P.D., Orejas, F. (eds.) WADT 2004. LNCS, vol. 3423, pp. 61–78. Springer, Heidelberg (2005) (to appear)Google Scholar
  10. 10.
    Gordon, M., Melham, T.: Introduction to HOL. Cambrige University Press, Cambrige (1993)zbMATHGoogle Scholar
  11. 11.
    Hoare, C.A.R.: Communicating Sequential Processes. Prentice Hall, Englewood Cliffs (1985)zbMATHGoogle Scholar
  12. 12.
    Isobe, Y., Roggenbach, M.: Webpage on Csp-Prover.
  13. 13.
    Lagarias, J.C.: The 3x + 1 problem and its generalizations. Amer. Math. Monthly 92, 3–23 (1985)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Lazic, R.: A Semantic Study of Data Independence with Applications to Model Checking. PhD thesis, Oxford University Computing Laboratory (1999)Google Scholar
  15. 15.
    Limited, F.S.E.: Failures-divergence refinement: FDR2,
  16. 16.
    Nipkow, T., Paulon, L.C., Wenzel, M.: Isabelle/HOL. LNCS, vol. 2283. Springer, Heidelberg (2002)zbMATHCrossRefGoogle Scholar
  17. 17.
    Owre, S., Rushby, J.M., Shankar, N.: PVS: A prototype verification system. In: Kapur, D. (ed.) CADE 1992. LNCS, vol. 607, pp. 748–752. Springer, Heidelberg (1992)Google Scholar
  18. 18.
    Paulson, L.C.: A Generic Theorem Prover. LNCS, vol. 828. Springer, Heidelberg (1994)zbMATHGoogle Scholar
  19. 19.
    Groenboom, I.P.R., Hendriks, C.: Algebraic proof assistants in HOL. In: Möller, B. (ed.) MPC 1995. LNCS, vol. 947, pp. 305–321. Springer, Heidelberg (1995)Google Scholar
  20. 20.
    Roggenbach, M.: CSP-Casl– A new integration of process algebra and algebraic specification. Theoretical Computer Science (to appear)Google Scholar
  21. 21.
    Roscoe, A.: The Theory and Practice of Concurrency. Prentice Hall, Englewood Cliffs (1998)Google Scholar
  22. 22.
    Roscoe, A.: On the expressive power of CSP refinement. In: Proceedings of AVoCS 2003, Technical Report. Southampton University (2003)Google Scholar
  23. 23.
    Ryan, P., Schneider, S., Goldsmith, M., Lowe, G., Roscoe, B.: The Modelling and Analysis of Security Protocols: the CSP Approach. Addison-Wesley, Reading (2001)Google Scholar
  24. 24.
    Schneider, S.: Verifying authentication protocol implementations. In: Jacobs, B., Rensink, A. (eds.) FMOODS 2002. IFIP Conference Proceedings, vol. 209, pp. 5–24. Kluwer, Dordrecht (2002)Google Scholar
  25. 25.
    Tej, H.: HOL-CSP: Mechanised Formal Development of Concurrent Processes. BISS Monograph, vol. 19. Logos, Berlin (2003)Google Scholar
  26. 26.
    Tej, H., Wolff, B.: A corrected failure-divergence model for CSP in Isabelle/HOL. In: Fitzgerald, J.S., Jones, C.B., Lucas, P. (eds.) FME 1997. LNCS, vol. 1313, pp. 318–337. Springer, Heidelberg (1997)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Yoshinao Isobe
    • 1
  • Markus Roggenbach
    • 2
  1. 1.AISTJapan
  2. 2.University of Wales SwanseaUnited Kingdom

Personalised recommendations