Advertisement

Energy Management for Embedded Multithreaded Processors with Integrated EDF Scheduling

  • Sascha Uhrig
  • Theo Ungerer
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3432)

Abstract

This paper proposes a new hardware-based energy management technique for future embedded multithreaded processors with integrated Earliest Deadline First (EDF) real-time scheduling. Our energy management technique controls frequency reduction and dynamic voltage scaling depending on the deadlines, the Worst Case Execution Times (WCET), and the real execution times. Hard real-time capability can be guaranteed for aperiodic threads and for threads with deadlines shorter than their period. Our evaluations show that energy consumption can be reduced up to about \(\frac{2}{3}\) of a comparable software-based algorithm.

Keywords

energy management energy-aware program execution real-time scheduling multithreading EDF scheduling 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kreuzinger, J., Schulz, A., Pfeffer, M., Ungerer, T., Brinkschulte, U., Krakowski, C.: Real-time Scheduling on Multithreaded Processors. In: 7th International Conference on Real-Time Computing Systems and Applications (RTCSA 2000), Cheju Island, South Korea, pp. 155–159 (2000)Google Scholar
  2. 2.
    Kreuzinger, J., Brinkschulte, U., Pfeffer, M., Uhrig, S., Ungerer, T.: Real-time Event-handling and Scheduling on a Multithreaded Java Microcontroller. Microprocessors and Microsystems 27, 19–31 (2003)CrossRefGoogle Scholar
  3. 3.
    Intel Corporation: Intel PXA26x Processor Family Developer’s Manual (2002)Google Scholar
  4. 4.
    Transmeta Corporation: Crusoe TM5500/TM5800 System Design Guide (2002)Google Scholar
  5. 5.
    Texas Instruments: MSP430x43x, MSP430x44x Mixed Signal Microcontroller (2004)Google Scholar
  6. 6.
    Li, H., Bhunia, S., Chen, Y., Vijaykumar, T.N., Roy, K.: Deterministic clock gating to reduce microprocessor power. In: International Symposium on High- Performance Computer Architecture (HPCA), pp. 113–122 (2003)Google Scholar
  7. 7.
    Shin, D., Kim, J., Lee, S.: Intra-task voltage scheduling for low-energy hard realtime applications. IEEE Design and Test of Computers 18 (2001)Google Scholar
  8. 8.
    Pillai, P., Shin, K.G.: Real-time dynamic voltage scaling for low-power embedded operating systems. In: ACM Symposium on Operating Systems Principles, pp. 89–102 (2001)Google Scholar
  9. 9.
    Jejurikar, R., Gupta, R.: Energy aware task scheduling with task synchronization for embedded real time systems. In: International Conference on Compilers, Architectures and Synthesis for Embedded Systems, Grenoble, France, pp. 164–169 (2002)Google Scholar
  10. 10.
    Pouwelse, J., Langendoen, K., Sips, H.: Energy priority scheduling for variable voltage processors. In: Int. Symposium on Low Power Electronics and Design (ISLPED), Huntington Beach, CA, USA (2001)Google Scholar
  11. 11.
    Pouwelse, J., Langendoen, K., Sips, H.: Dynamic voltage scaling on a low-power microprocessor. In: 7th ACM International Conference on Mobile Computing and Networking (Mobicom), Rome, Italy, pp. 251–259 (2001)Google Scholar
  12. 12.
    Krishna, C., Lee, Y.H.: Voltage-Clock-Scaling Adaptive Scheduling Techniques for Low Power in Hard Real-Time Systems. In: Proceedings of Real-Time Applications Symposium (2000)Google Scholar
  13. 13.
    Krishna, C., Lee, Y.H.: Voltage-Clock-Scaling Adaptive Scheduling Techniques for Low Power in Hard Real-Time Systems. IEEE Transactions on Computers 52 (2003)Google Scholar
  14. 14.
    Aydin, H., Melhem, R., Mosse, D., Mejia-Alvarez, P.: Power-Aware Scheduling for Periodic Real-Time Tasks. IEEE Transactions on Computers 53, 584–600 (2004)CrossRefGoogle Scholar
  15. 15.
    Brooks, D., Bose, P., Schuster, S., Jacobson, H., Kudva, P., Buyuktosunoglu, A., Wellman, J.D., Zyuban, V., Gupta, M., Cook, P.: Power-aware Microarchitecture: Designing and Modeling Challenges for Next-generation Microprocessors 20, 26–44 (2000)Google Scholar
  16. 16.
    Seng, J., Tullsen, D., Cai, G.: Power-sensitive multithreaded architecture. In: 2000 IEEE International Conference on Computer Design: VLSI in Computers and Processors, Austin, TX, USA, pp. 199–206 (2000)Google Scholar
  17. 17.
    Uhrig, S., Ungerer, T.: Fine-grained power management for multithreaded processor cores. In: ACM Symposium on Applied Computing (SAC 2004), Nicosia, Cypres (2004)Google Scholar
  18. 18.
    Uhrig, S., Ungerer, T.: Fine-grained power management for real-time embedded processors. In: RTS Embedded Systems, Paris, France, pp. 129–146 (2004)Google Scholar
  19. 19.
    Ernst, R., Ye, W.: Embedded Program Timing Analysis Based on Path Clustering and Architecture Classification. In: International Conference on Computer-Aided Design (ICCAD 1997), pp. 598–604 (1997)Google Scholar
  20. 20.
    Uhrig, S., Liemke, C., Pfeffer, M., Becker, J., Brinkschulte, U., Ungerer, T.: Implementing Real-time Scheduling Within a Multithreaded Java Microcontroller. In: 6th Workshop on Multithreaded Execution, Architecture and Compilation (MTEAC-6) in conjunction with 35th International Symposium on Microarchitecture (MICRO-35), Istanbul, Turkey, pp. 57–64 (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Sascha Uhrig
    • 1
  • Theo Ungerer
    • 1
  1. 1.Institute of Computer ScienceUniversity of AugsburgAugsburgGermany

Personalised recommendations