Some Game-Theoretic Problems in Wireless Ad-Hoc Networks

  • E. Altman
  • Vivek S. Borkar
  • Arzad A. Kherani
  • P. Michiardi
  • R. Molva
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3427)


Wireless Ad-hoc networks are expected to be made up of energy aware entities (nodes) interested in their own perceived performance. We consider a simple random access model for a wireless ad hoc network to address problems of finding an optimal channel access rate and providing incentive for cooperation to forward other nodes’ traffic. By casting these problems as noncooperative games, we derive conditions for the Nash equilibrium and provide distributed algorithms to learn the Nash equilibrium.


Game theory Stochastic approximation algorithm 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Altman, E., El Azouzi, R., Jimenez, T.: Slotted Aloha as a Stochastic Game with Partial Information. In: WiOpt 2003, Sophia Antipolis, France (2003)Google Scholar
  2. 2.
    Altman, E., Borkar, V.S., Kherani, A.A.: Optimal Random Access in Networks with Two-Way Traffic. In: PIMRC 2004, Spain (2004)Google Scholar
  3. 3.
    Altman, E., Kherani, A.A., Michiardi, P., Molva, R.: Non-cooperative Forwarding in Ad-hoc Networks. INRIA Report No. RR-5116, Sophia-Antipolis, France (February 2004)Google Scholar
  4. 4.
    Bertsekas, D., Gallager, R.: Data Networks. Prentice Hall, Englewood Cliffs (1992)zbMATHGoogle Scholar
  5. 5.
    Bharghavan, V., Demers, A., Shenker, S., Zhang, L.: MACAW: A Media Access Protocol for Wireless LANs. ACM SIGCOMM (1994)Google Scholar
  6. 6.
    Borkar, V.S.: Asynchronous Stochastic Approximation. SIAM Journ. of Control and Optimization 36 (1998)Google Scholar
  7. 7.
    Borkar, V.S., Kherani, A.A.: Random Access in Wireless Ad Hoc Networks as a Distributed Game. In: Proceedings of WiOpt 2004, Cambridge (2004)Google Scholar
  8. 8.
    Cali, F., Conti, M., Gregori, E.: Dynamic tuning of the IEEE 802.11 protocol to achieve a theoretical throughput limit. IEEE/ACM Transactions on Networking (2000)Google Scholar
  9. 9.
    Crowcroft, J., Gibbens, R., Kelly, F., Ostring, S.: Modelling incentives for collaboration in mobile Ad-hoc networks. In: Proceedings of WiOpt 2003, Sophia-Antipolis, France, March 3-5 (2003)Google Scholar
  10. 10.
    Dutta, D., Goel, A., Heidemann, J.: Oblivious AQM and Nash Equilibria. In: IEEE Infocom (2003)Google Scholar
  11. 11.
    Félegyházi, M., Buttyán, L., Hubaux, J.P.: Equilibrium analysis of packet forwarding strategies in wireless Ad-hoc entworks – The static case. In: Conti, M., Giordano, S., Gregori, E., Olariu, S. (eds.) PWC 2003. LNCS, vol. 2775, pp. 776–789. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  12. 12.
    IEEE Computer Society LAN MAN Standards Committee: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications. IEEE Standard 802.11-1997 (1997)Google Scholar
  13. 13.
    Johnson, D., Maltz, D., Broch, J.: DSR: The Dynamic Source Routing Protocol for Multi Hop Wireless Ad Hoc Networks. In: Ad Hoc Networking. Addison-Wesley, Reading (2001)Google Scholar
  14. 14.
    Karnik, A., Kumar, A.: Optimal Self-Organization of Wireless Sensor Networks. In: Infocom 2004 (2004)Google Scholar
  15. 15.
    Kushner, H.J., Yin, G.: Stochastic Approximation Algorithms and Applications. Springer, Heidelberg (1997)zbMATHGoogle Scholar
  16. 16.
    Kushner, H.J., Yin, G.: Stochastic Approximation Algorithms and Applications. Springer, Heidelberg (1997)zbMATHGoogle Scholar
  17. 17.
    Mas-Colell, A., Whinston, M.D., Green, J.R.: Microeconomic Theory. Oxford Univ. Press, Oxford (1995)Google Scholar
  18. 18.
    Michiardi, P., Molva, R.: A game theoretical approach to evaluate cooperation enforcement mechanisms in mobile Ad-hoc networks. In: Proceedings of WiOpt 2003, Sophia-Antipolis, France, March 3-5 (2003)Google Scholar
  19. 19.
    Perkins, C.E., Bhagwat, P.: Highly Dynamic Destination-Sequenced Distance- Vector Routing (DSDV) for Mobile Computers. Computer Communications Review (1994)Google Scholar
  20. 20.
    Rosen, J.B.: Existence and Uniqueness of Equlibrium Points for Concave N-Person Games. Econometrica (1965)Google Scholar
  21. 21.
    Samuelson, L.: Subgame Perfection: An Introduction. In: Creedy, J., Borland, J., Eichberger, J. (eds.) Recent Developments in Game Theory, pp. 1–42. Edgar Elgar Publishing (1992)Google Scholar
  22. 22.
    Srinivasan, V., Nuggehalli, P., Chiasserini, C.F., Rao, R.R.: Cooperation in wireless Ad-hoc networks. In: Proceedings of IEEE Infocom (2003)Google Scholar
  23. 23.
    Sundaram, R.K.: A First Course in Optimization Theory. Cambridge University Press, Cambridge (1999)Google Scholar
  24. 24.
    Urpi, A., Bonuccelli, M., Giordano, S.: Modelinig cooperation in mobile Ad-hoc networks: a formal description of selfishness. In: Proceedings of WiOpt 2003, Sophia- Antipolis, France, March 3-5 (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • E. Altman
    • 1
  • Vivek S. Borkar
    • 2
  • Arzad A. Kherani
    • 1
  • P. Michiardi
    • 3
  • R. Molva
    • 3
  1. 1.INRIASophia AntipolisFrance
  2. 2.School of Technology and Computer ScienceTata Institute of Fundamental ResearchMumbaiIndia
  3. 3.GET/EURECOM, Sophia-AntipolisFrance

Personalised recommendations