Skip to main content

Qualitative Analysis and Verification of Hybrid Models of Genetic Regulatory Networks: Nutritional Stress Response in Escherichia coli

  • Conference paper
Hybrid Systems: Computation and Control (HSCC 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3414))

Included in the following conference series:

Abstract

The switch-like character of the dynamics of genetic regulatory networks has attracted much attention from mathematical biologists and researchers on hybrid systems alike. We extend our previous work on a method for the qualitative analysis of hybrid models of genetic regulatory networks, based on a class of piecewise-affine differential equation (PADE) models, in two directions. First, we present a refinement of the method using a discrete or qualitative abstraction that preserves stronger properties of the dynamics of the PA systems, in particular the sign patterns of the derivatives of the concentration variables. The discrete transition system resulting from the abstraction is a conservative approximation of the dynamics of the PA system and can be computed symbolically. Second, we apply the refined method to a regulatory system whose functioning is not yet well-understood by biologists, the nutritional stress response in the bacterium Escherichia coli.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Glass, L., Kauffman, S.: The logical analysis of continuous non-linear biochemical control networks. J. Theor. Biol. 39, 103–129 (1973)

    Article  Google Scholar 

  2. Thomas, R., d’Ari, R.: Biological Feedback. CRC Press, Boca Raton (1990)

    MATH  Google Scholar 

  3. Belta, C., Finin, P., Habets, L., Halász, A., Imielinski, M., Kumar, V., Rubin, H.: Understanding the bacterial stringent response using reachability analysis of hybrid systems. In: Alur, R., Pappas, G.J. (eds.) HSCC 2004. LNCS, vol. 2993, pp. 111–125. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  4. de Jong, H., Gouzé, J.L., Hernandez, C., Page, M., Sari, T., Geiselmann, J.: Hybrid modeling and simulation of genetic regulatory networks: A qualitative approach. In: Maler, O., Pnueli, A. (eds.) HSCC 2003. LNCS, vol. 2623, pp. 267–282. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  5. Ghosh, R., Tomlin, C.: Symbolic reachable set computation of piecewise affine hybrid automata and its application to biological modeling: Delta-Notch protein signalling. Syst. Biol. 1, 170–183 (2004)

    Article  Google Scholar 

  6. Hu, J., Wu, W.C., Sastry, S.: Modeling subtilin production in B. subtilis using stochastic hybrid systems. In: Alur, R., Pappas, G.J. (eds.) HSCC 2004. LNCS, vol. 2993, pp. 417–431. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  7. Asarin, E., Dang, T.: Abstraction by projection and application to multi-affine systems. In: Alur, R., Pappas, G.J. (eds.) HSCC 2004. LNCS, vol. 2993, pp. 32–47. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  8. Lygeros, J., Pappas, G., Sastry, S.: An introduction to hybrid system modeling, analysis, and control. Preprints of 1st Nonlinear Control Network Pedagogical School, Greece (1999)

    Google Scholar 

  9. Antsaklis, P., Koutsoukos, X.: Hybrid dynamical systems: review and recent progress. In: Samad, T., Balas, G. (eds.) Software-enabled Control: Information Technologies for Dynamical Systems. Wiley-IEEE Press (2003)

    Google Scholar 

  10. de Jong, H.: Modeling and simulation of genetic regulatory systems: A literature review. J. Comput. Biol. 9, 69–105 (2002)

    Google Scholar 

  11. de Jong, H., Gouzé, J.L., Hernandez, C., Page, M., Sari, T., Geiselmann, J.: Qualitative simulation of genetic regulatory networks using piecewise-linear models. Bull. Math. Biol. 66, 301–340 (2004)

    Article  MathSciNet  Google Scholar 

  12. de Jong, H., Geiselmann, J., Hernandez, C., Page, M.: Genetic Network Analyzer: Qualitative simulation of genetic regulatory networks. Bioinformatics 19, 336–344 (2003)

    Article  Google Scholar 

  13. de Jong, H., Geiselmann, J., Batt, G., Hernandez, C., Page, M.: Qualitative simulation of the initiation of sporulation in B. subtilis. Bull. Math. Biol. 66, 261–300 (2004)

    Article  MathSciNet  Google Scholar 

  14. Batt, G., de Jong, H., Geiselmann, J., Page, M., Ropers, D., Schneider, D.: Symbolic reachability analysis of genetic regulatory networks using qualitative abstraction. Technical report RR-5362 INRIA (2004)

    Google Scholar 

  15. Filippov, A.: Differential Equations with Discontinuous Righthand Sides. Kluwer Academic Publishers, Dordrecht (1988)

    Google Scholar 

  16. Gouzé, J.L., Sari, T.: A class of piecewise linear differential equations arising in biological models. Dyn. Syst. 17, 299–316 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  17. Alur, R., Henzinger, T., Lafferriere, G., Pappas, G.: Discrete abstractions of hybrid systems. Proc. IEEE 88, 971–984 (2000)

    Article  Google Scholar 

  18. Chutinan, A., Krogh, B.: Verification of infinite-state dynamic systems using approximate quotient transition systems. IEEE Trans. Automat. Contr. 46, 1401–1410 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  19. Huisman, G., Siegele, D., Zambrano, M., Kolter, R.: Morphological and physiological changes during stationary phase. In: Neidhardt, et al. (eds.) E. coli and Salmonella: Cellular and Molecular Biology, pp. 1672–1682. ASM Press (1996)

    Google Scholar 

  20. Hengge-Aronis, R.: The general stress response in E. coli. In: Storz, G., Hengge-Aronis, R. (eds.) Bacterial Stress Responses, pp. 161–177. ASM Press (2000)

    Google Scholar 

  21. Ropers, D., de Jong, H., Page, M., Schneider, D., Geiselmann, H.: Qualitative simulation of nutritional stress response in E. coli. Technical Report RR-5412 (2004) (submitted for publication)

    Google Scholar 

  22. Batt, G., Bergamini, D., de Jong, H., Gavarel, H., Mateescu, R.: Model checking genetic regulatory networks using GNA and CADP. In: Graf, S., Mounier, L. (eds.) SPIN 2004. LNCS, vol. 2989, pp. 158–163. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  23. Tiwari, A., Khanna, G.: Series abstractions for hybrid automata. In: Tomlin, C.J., Greenstreet, M.R. (eds.) HSCC 2002. LNCS, vol. 2289, pp. 465–478. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  24. Kuipers, B.: Qualitative Reasoning: Modeling and Simulation with Incomplete Knowledge. MIT Press, Cambridge (1994)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Batt, G., Ropers, D., de Jong, H., Geiselmann, J., Page, M., Schneider, D. (2005). Qualitative Analysis and Verification of Hybrid Models of Genetic Regulatory Networks: Nutritional Stress Response in Escherichia coli . In: Morari, M., Thiele, L. (eds) Hybrid Systems: Computation and Control. HSCC 2005. Lecture Notes in Computer Science, vol 3414. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-31954-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-31954-2_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-25108-8

  • Online ISBN: 978-3-540-31954-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics