Primary Production in Boreal Peatlands

  • R. Kelman Wieder
Part of the Ecological Studies book series (ECOLSTUD, volume 188)


Nitrogen Deposition Global Change Biol Sphagnum Species Belowground Production Atmospheric Nitrogen Deposition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aerts R, Wallén B, Malmer N (1992) Growth-limiting nutrients in Sphagnum-dominated bogs subject to low and high atmospheric nitrogen supply. J Ecol 80:131–140CrossRefGoogle Scholar
  2. Aerts R, Wallén B, Malmer N, de Caluwe H (2001) Nutritional constraints on Sphagnum-growth and potential decay in northern peatlands. J Ecol 89:292–299CrossRefGoogle Scholar
  3. Alban DH, Watt RF (1981) Fertilization of black spruce on poor site peatland in Minnesota. USDA Forest Service, research paper NC-210. North Central Forest Experiment Station, St PaulGoogle Scholar
  4. Austin, KA, Wieder RK (1987) Effects of elevated H+, SO42−, NO3, and NH4+ in simulated acid precipitation on the growth and chlorophyll concentration of 3 North American Sphagnum species. Bryologist 90:221–229CrossRefGoogle Scholar
  5. Backéus I (1990) Production and depth distribution of fine roots in a boreal open bog. Ann Bot Fenn 27:261–265Google Scholar
  6. Bartsch I, Moore TR (1985) A preliminary investigation of primary production and decomposition in four peatlands near Schefferville, Québec. Can J Bot 69:1241–1248CrossRefGoogle Scholar
  7. Bartsch I, Schwintzer CR (1994) Growth of Chamaedaphne calyculata at two peatland sites in relation to nutrient availability. Wetlands 14:147–158Google Scholar
  8. Bayley SE, Vitt DH, Newbury RW, Beaty KG, Bent R, Miller C (1987) Experimental acidification of a Sphagnum-dominated peatland: first year results. Can J Fish Aquat Sci 44:194–205CrossRefGoogle Scholar
  9. Bazilevich NI (1967) Productivnost’ I biologicheskii krugovorot v mohovyh bolotah yuzhnogo Vacjuganiya. Rastit Resursy 3:567–588Google Scholar
  10. Belyea LR, Malmer N (2004) Carbon sequestration in peatland: patterns and mechanisms of response to climate change. Global Change Biol 10:1043–1052CrossRefGoogle Scholar
  11. Berendse F, van Breemen N, Rydin H, Buttler A, Heijmans MMPD, Hoosbeek MR, Lee JA, Mitchell E, Saarinen T, Vasander H, Wallén B (2001) Raised atmospheric CO2 levels and increased N deposition cause shifts in plant species composition and production in Sphagnum bogs. Global Change Biol 7:591–598CrossRefGoogle Scholar
  12. Billings WD (1987) Carbon balance of Alaskan tundra and taiga ecosystems: past, present, and future. Quat Sci Rev 6:165–177Google Scholar
  13. Bragazza L, Tahvanainen T, Kutnar L, Rydin H, Limpens J, Hájek M, Grosvernier P, Hájek T, Hajkova P, Hansen I, Iacumin P, Gerdol R (2004) Nutritional constraints in ombrotrophic Sphagnum plants under increasing atmospheric nitrogen deposition in Europe. New Phytol 163:609–616CrossRefGoogle Scholar
  14. Brock TCM, Bregman R (1989) Periodicity on growth, productivity, nutrient content and decomposition of Sphagnum recurvum var. mucronatum in a fen woodland. Oecologia 80:44–52.CrossRefGoogle Scholar
  15. Busby JR, Bliss LC, Hamilton CD (1978). Microclimate control of growth rates and habitats of the boreal forest mosses, Tomenthypnum nitens and Hylocomium splendens. Ecol Monogr 48:95–110CrossRefGoogle Scholar
  16. Camill P, Lynch JA, Clark JS, Adams JB, Jordan B (2001) Changes in biomass, aboveground net primary production, and peat accumulation following permafrost thaw in the boreal peatlands of Manitoba, Canada. Ecosystems 4:461–478CrossRefGoogle Scholar
  17. Campbell C, Vitt DH, Halsey LA, Campbell ID, Thormann MN, Bayley SE (2000). Net primary production and standing biomass in northern continental wetlands. Natural Resources Canada, Canadian Forest Service, Northern Forestry Centre, Edmonton, Alberta. Information report NOR-X-369Google Scholar
  18. Chapin CT, Bridgham SD, Pastor J (2004) pH and nutrient effects on above-ground net primary production in a Minnesota, USA bog and fen. Wetlands 24:186–201CrossRefGoogle Scholar
  19. Clymo RS (1970) The growth of Sphagnum: Methods of measurement. J Ecol 58:13–19CrossRefGoogle Scholar
  20. Clymo RS (1984) Sphagnum-dominated peat bog: A naturally acid ecosystem. Philos Trans R Soc Lond Ser B 305:487–499Google Scholar
  21. Clymo RS, Hayward PM (1982) The ecology of Sphagnum. In: Smith AJE (ed) Bryophyte ecology. Chapman and Hall, London, pp 229–289Google Scholar
  22. Conlin TS, Lieffers VJ (1993) Seasonal growth of black spruce and tamarack roots in an Alberta peatland. Can J Bot 71:359–360Google Scholar
  23. Crow SE, Wieder RK (2005) Sources of CO2 emission from a northern peatland: the role of root respiration, root exudates, and organic matter. Ecology 86:1825–1834Google Scholar
  24. Crum H (1992) A focus on peatlands and peat mosses. University of Michigan Press, Ann Arbor, MIGoogle Scholar
  25. Damman AWH (1979) Geographic patterns in peatland development in eastern North America. Proceedings of the international symposium on classification of peat and peatlands, Hyytialä, Finland. International Peat Society, JyväskyläGoogle Scholar
  26. Dang QL, Lieffers VJ (1989) Assessment of patterns of tree ring growth of black spruce following peatland drainage. Can J For Res 19:924–929Google Scholar
  27. Ferguson P, Lee JA (1979) The effects of bisulphite and sulphate on photosynthesis in Sphagnum. New Phytol 82:703–712CrossRefGoogle Scholar
  28. Ferguson P, Lee JA (1980) Some effects of bisulphite and sulphate on the growth of Sphagnum in the field. Environ Pollut 21:58–71Google Scholar
  29. Ferguson P, Lee JA (1983) The growth of Sphagnum species in the southern Pennines. J Bryol 12:579–586Google Scholar
  30. Ferguson P, Lee JA, Bell JNB (1978) Effects of sulfur pollution on the growth of Sphagnum species. Environ Pollut 16:151–162CrossRefGoogle Scholar
  31. Finér L (1991) Root biomass on an ombrotrophic pine bog and the effects of PK and NPK fertilization. Silva Fenn 25:1–12Google Scholar
  32. Finér L, Laine J (1998) Root dynamics at drained peatland sites of different fertility in southern Finland. Plant Soil 201:27–36CrossRefGoogle Scholar
  33. Finér L, Laine J (2000) The ingrowth bag method in measuring root production on peatland sites. Scand J For Res 15:75–80CrossRefGoogle Scholar
  34. Frolking S, Roulet NT, Moore TR, Richard JPH, Lavoie M (2001) Modeling northern peatland decomposition and peat accumulation. Ecosystems 4:479–498CrossRefGoogle Scholar
  35. Gignac LD (1992) Niche structure, resource partitioning and species interactions of mire bryophytes relative to climatic and ecological gradients in western Canada. Bryologist 95:406–418CrossRefGoogle Scholar
  36. Gignac LD, Vitt DH, Bayley SE (1991a) Bryophyte response surfaces along ecological and climatic gradients. Vegetatio 93:29–45Google Scholar
  37. Gignac LD, Vitt DH, Zoltai SC, Bayley SE (1991b) Bryophyte response surfaces along climatic, continental and physical gradients in peatlands of western Canada. Nova Hedwigia 53:27–71Google Scholar
  38. Gignac LD, Nicholson BJ, Bayley SE (1998) The utilization of bryophytes in bioclimatic modelling: Predicted northward migration of peatlands in the Mackenzie River Basin, Canada as a result of global warming. Bryologist 101:572–587CrossRefGoogle Scholar
  39. Glerum C, Pierpoint G (1968) The influence of soil moisture deficits on seedling growth of three coniferous species. For Chron 44:26–29Google Scholar
  40. Goodman GT, Perkins DF (1968a) The role of mineral nutrients in Eriophorum communities. III. Growth response to added inorganic elements in two E. vaginatum communities. J Ecol 56:667–683CrossRefGoogle Scholar
  41. Goodman GT, Perkins DF (1968b) The role of mineral nutrients in Eriophorum communities. V. Potassium supply as a limiting factor in an E. vaginatum community. J Ecol 56:685–696CrossRefGoogle Scholar
  42. Gore AJP (1961a) Factors limiting plant growth on high-level blanket peat. I. Calcium and phosphate. J Ecol 49:399–402CrossRefGoogle Scholar
  43. Gore AJP (1961b) Factors limiting plant growth on high-level blanket peat. II. Nitrogen and phosphate in the first year of growth. J Ecol 49:605–616CrossRefGoogle Scholar
  44. Grigal DF, Buttleman CG, Kernik LK (1985) Biomass and productivity of the woody strata of forested bogs in northern Minnesota. Can J Bot 63:1204–1207CrossRefGoogle Scholar
  45. Gunnarsson U (2005) Global patterns of Sphagnum productivity. J Bryol 27:269–279CrossRefGoogle Scholar
  46. Gunnarsson U, Rydin H (2000) Nitrogen fertilization reduces Sphagnum production in bog communities. New Phytol 147:527–537CrossRefGoogle Scholar
  47. Gunnarsson U, Granberg G, Nilsson M (2004) Growth, production and interspecific competition in Sphagnum: Effects of temperature, nitrogen and sulphur treatments on a boreal mire. New Phytol 163:349–359CrossRefGoogle Scholar
  48. Hansen PJ, Edwards NT, Garten CT, Andrews JA (2000) Separating root and soil microbial contributions to soil respiration: a review of methods and observations. Biogeochemistry 48:115–146CrossRefGoogle Scholar
  49. Heikurainen L (1955) Remnikjuuriston rakenne ja kuivatuksen vaikutus siiben. Referat: Der Wurzelaufbau der Kiefernbeständen auf Reisermoorböden und seine Beflussung durch die Entwässerung. Acta For Fenn 65:1–86Google Scholar
  50. Heinselman ML (1970) Landscape evolution, peatland types, and the environment in the Lake Agassiz Peatlands Natural Area, Minnesota. Ecol Monogr 40:235–261CrossRefGoogle Scholar
  51. Hilbert DW, Roulet NT, Moore TR (2000) Modelling and analysis of peatlands as dynamic systems. J Ecol 88:241–256CrossRefGoogle Scholar
  52. Hillman GR, Johnson JD, Takyi SK (1990) The Canada Alberta Wetlands Drainage and Improvement for Forestry Program. Forestry Canada/Alberta Forestry, Lands and Wildlife, project no 141301417086, Edmonton, CanadaGoogle Scholar
  53. Hoosbeek MR, van Breemen N, Berendse F, Grosvernier P, Vasander H, Wallén B (2001) Limited effect of increased atmospheric CO2 concentration on ombrotrophic bog vegetation. New Phytol 150:459–463CrossRefGoogle Scholar
  54. Hoosbeek MR, van Breemen N, Vasander H, Buttler A, Berendse F (2002) Potassium limits potential growth of bog vegetation under elevated atmospheric CO2 and N deposition. Global Change Biol 8:1130–1138CrossRefGoogle Scholar
  55. Jauhiainen J, Silvola J (1999) Photosynthesis of Sphagnum fuscum at long-term raised CO2 concentrations. Ann Bot Fenn 36:11–19Google Scholar
  56. Jauhiainen J, Vasander H, Silvola J (1994) Response of Sphagnum fuscum to N deposition and increased CO2. J Bryol 18:183–195Google Scholar
  57. Jauhiainen J, Silvola J, Vasander H (1999) The effects of increased nitrogen deposition and CO2 on Sphagnum angustifolium and S. warnstorfii. Ann Bot Fenn 35:247–256Google Scholar
  58. Jeglum JK (1974) Relative influence of moisture-aeration and nutrients on vegetation and black spruce growth in northern Ontario. Can J For Res 4:114–126CrossRefGoogle Scholar
  59. Johnston WF (1990). Tamarack. In: Burns RM, Honkala BH (eds) Silvics of North America. Agriculture handbook 654, vol 1.(Conifers). US Department of Agriculture, Washington, DC, pp 141–151Google Scholar
  60. Kozlovskaya LS, Medvedeva VM, P’yavchenko NI (1978) Dinamika organicheskogo vechestva v prochesse torfoobrazovanuiya (The dynamics of organic matter development in the process of peat formation). Nauka, St PetersburgGoogle Scholar
  61. LaFleur PM, Roulet NT, Bubier JL, Frolking S, Moore TR (2003) Interannual variability in the peatland-atmosphere carbon dioxide exchange at an ombrotrophic bog. Global Biogeochem Cycles 17:1036. DOI 1029/2002GB001983CrossRefGoogle Scholar
  62. Lamers LPM, Bobbink R, Roelofs JGM (2000) Natural nitrogen filter fails in raised bogs. Global Change Biol 6:583–586CrossRefGoogle Scholar
  63. Li Y, Vitt DH (1997) Patterns of retention and utilization of aerially deposited nitrogen n boreal peatlands. Écoscience 4:106–116Google Scholar
  64. Lieffers VJ, Rothwell RL (1986) Effects of water table and substrate temperature on oot and top growth of Picea mariana and Larix laricina seedlings. Can J For Res 6:1201–1206Google Scholar
  65. Limpens J, Berendse F (2003) Growth reduction of Sphagnum magellanicum subjected o high nitrogen deposition: The role of amino acid nitrogen concentration. Oecologia 135:339–345PubMedGoogle Scholar
  66. Limpens J, Berendse F, Klees H (2003a) N deposition affects N availability in interstitial water, growth of Sphagnum and invasion of vascular plants in bog vegetation. New Phytol 157:339–347CrossRefGoogle Scholar
  67. Limpens J, Tomassen HBM, Berendse F (2003b) Expansion of S. fallax in bogs: Striking the balance between N and P availability. J Bryol 25:83–90CrossRefGoogle Scholar
  68. Limpens J, Berendse F, Klees H (2004) How phosphorus availability affects the impact of nitrogen deposition on Sphagnum and vascular plants in bogs. Ecosystems 7:793–804CrossRefGoogle Scholar
  69. Linderholm HW, Moberg A, Gould H (2002) Peatland pines as indicators? A regional comparison of the climatic influence of Scots pine growth in Sweden. Can J For Res 32:1400–1410CrossRefGoogle Scholar
  70. Lindholm T (1990) Growth dynamics of the peat moss Sphagnum fuscum on hummocks on a raised bog in southern Finland. Ann Bot Fenn 27:67–78Google Scholar
  71. MacDonald SE, Yin F (1999) Factors influencing size inequality in peatland black spruce and tamarack: Evidence from post-drainage release growth. J Ecol 87:404–412CrossRefGoogle Scholar
  72. Minkkinen K, Laine J (1998) Long-term effect of forest drainage on the peat carbon stores of pine mires in Finland. Can J For Res 28:1267–1275CrossRefGoogle Scholar
  73. Mitchell EAD, Buttler A, Grosvernier P, Rydin H, Siegenthaler A, Gobat J-M (2002) Contrasted effects of increased N and CO2 supply on two keystone species in peatland restoration and implications for global change. J Ecol 90:529–533CrossRefGoogle Scholar
  74. Montague TG, Givnish TJ (1996) Distribution of black spruce versus eastern larch along peatland gradients: relationship to relative stature, growth rate, and shade tolerance. Can J Bot 74:1514–1532Google Scholar
  75. Moore TR (1989) Growth and net production of Sphagnum at five fen sites, subarctic eastern Canada. Can J Bot 67:1203–1207Google Scholar
  76. Moore PD, Bellamy DJ (1974) Peatlands. Elek, LondonGoogle Scholar
  77. Norby RJ, Kobayashi K, Kimball BA (1999) Commentary — Rising CO2 — future ecosystems. New Phytol 150:215–221CrossRefGoogle Scholar
  78. Ouni K (1977) Kasvibiomassen ja sen vuotuisen tuotoksen määrä ja jakaantuminen luonnontilaisella ja ojitetulla varsinaisella saranevalla. MSc thesis, University of Helsinki, Department of Silviculture, HelsinkiGoogle Scholar
  79. Paavilainen E (1966) Maan vestialouden järjestelyn vaikutuksesta rämemännikön juuristosuhteisiin. Summary: on the effect of drainage on root systems of Scots pine on peat soils. Comm Inst For Fenn 61:1–110Google Scholar
  80. Paavilainen E (1967) Lannoituksen vaikutus rämemännikön juurisuhteisiin. Summary: The effect of fertilization on the root systems of swamp pine stands. Folia For 31:9Google Scholar
  81. Paavilainen E (1968) Juuristotukimuksia Kivisuon metsänlannoituskoekentällä. Summary: root studies at the Kivisuo forest fertilization area. Commun Inst For Fenn 66:1–3Google Scholar
  82. Paavilainen E (1980) Effect of fertilization on plant biomass and nutrient cycle on a drained dwarf shrub pine swamp. Commun Inst For Fenn 98:1–71Google Scholar
  83. Payandeh B (1978) A site index formula for peatland black spruce in Ontario. For Chron 54:39–41Google Scholar
  84. Payandeh B (1989) Growth of black spruce trees following fertilization on drained peatland. For Chron 65:102–106Google Scholar
  85. Press MC, Lee JA (1982) Nitrate reductase activity of Sphagnum species in the south Pennines. New Phytol 92:487–492CrossRefGoogle Scholar
  86. Press MC, Woodin SJ, Lee JA (1986) The potential importance of an increased atmospheric nitrogen supply to the growth of ombrotrophic Sphagnum species. New Phytol 103:45–55CrossRefGoogle Scholar
  87. Reader RJ, Stewart JM (1972) The relationship between net primary production and accumulation for a peatland in southeastern Manitoba. Ecology 53:1024–1037CrossRefGoogle Scholar
  88. Rochefort L, Vitt DH (1988) Effects of simulated acid rain on Tomenthypnum nitens and Scorpidium scorpioides in a rich fen. Bryologist 91:121–129CrossRefGoogle Scholar
  89. Rochefort L, Vitt DH, Bayley SE (1990) Growth, production, and decomposition dynamics of Sphagnum under natural and experimentally acidified conditions. Ecology 71:1986–2000CrossRefGoogle Scholar
  90. Roy V, Bernier PY, Plamondon AP, Ruel JC (1999) Effect of drainage and microtopography in forested wetlands on the microenvironment and growth of planted black spruce seedlings. Can J For Res 29:563–574CrossRefGoogle Scholar
  91. Saarinen T (1996) Biomass and production of two vascular plants in a boreal mesotrophic fen. Can J Bot 74:934–938Google Scholar
  92. Schwintzer CR (1983) Primary productivity and nitrogen, carbon, and biomass distribution in a dense Myrica gale stand. Can J Bot 61:2943–2948CrossRefGoogle Scholar
  93. Seppälä K ((1969) Postdrainage growth or Norway spruce and Scots pine on peat. Acta For Fenn 93:1–89Google Scholar
  94. Silvola J (1990) Combined effect of varying water content and CO2 concentration on photosynthesis in Sphagnum fuscum. Holarct Ecol 13:224–228Google Scholar
  95. Silvola J, Alm J, Ahlholm U, Nykanen H, Martikainen PJ (1996) The contribution of plant roots to CO2 fluxes from organic soils. Biol Fert Soils 23:126–131Google Scholar
  96. Sims RA, Riley JL, Jeglum JK (1979) Vegetation, flora and vegetational ecology of the Hudson Bay Lowland: a literature review and annotated bibliography. Canadian Forestry Service, report O-X-297. Sault Ste. Marie, CanadaGoogle Scholar
  97. Skene KR, Sprent JI, Raven JA, Herdman L (2000) Myrica gale L. J Ecol 88:1079–1094CrossRefGoogle Scholar
  98. Skilling DD (1990) Scotch pine. In: Burns RM, Honkala BH (eds) Silvics of North America. Agriculture handbook 654, vol 1. (Conifers). US Department of Agriculture, Washington, DC, pp 489–496Google Scholar
  99. Steven HM, Carlisle A (1959) The native pinewoods of Scotland. Oliver and Boyd, EdinburghGoogle Scholar
  100. Szumigalski AR (1995) Production and decomposition of vegetation along a wetland gradient in central Alberta. MSc thesis, University of Alberta, EdmontonGoogle Scholar
  101. Szumigalski AR, Bayley SE (1996) Net above-ground primary production along a bog-rich fen gradient in central Alberta, Canada. Wetlands 16:467–476CrossRefGoogle Scholar
  102. Tallis JH (1964) Studies of southern Pennine peats. III. The behaviour of Sphagnum. J Ecol 52:345–353CrossRefGoogle Scholar
  103. Tamm CO (1954) Some observations on the nutrient turn-over in a bog community dominated by Eriophorum vaginatum L. Oikos 5:189–194Google Scholar
  104. Thormann MN (1995) Primary production and decomposition in fens and marshes in the boreal region of Alberta, Canada. MSc thesis, University of Alberta, EdmontonGoogle Scholar
  105. Thormann MN, Bayley SE (1997) Aboveground net primary production along a bogfen-marsh gradient in southern boreal Alberta, Canada. Écoscience 4:374–384Google Scholar
  106. Tilton DL (1977) Seasonal growth and foliar nutrients of Larix laricina in three wetland ecosystems. Can J Bot 55:1291–1298CrossRefGoogle Scholar
  107. Tomassen HBM, Smolders AJP, Limpens J, Lamers LPM, Roelofs JGN (2004) Expansion of invasive species on ombrotrophic bogs: Desiccation or high N deposition. J Ecol 41:139–150Google Scholar
  108. Ulrich K (1980) Net primary productivity of a mature southern Michigan bog. Mich Acad 12:289–295Google Scholar
  109. van der Heijden E, Verbeek SK, Kuiper PJC (2000) Elevated atmospheric CO2 and increased nitrogen deposition: effects on C and N metabolism and growth of the peat moss Sphagnum recurvum P. Beauv. var. mucronatum (Russ.) Warnst. Global Change Biol 6:201–212CrossRefGoogle Scholar
  110. van Nostrand RS (1979) Growth response of black spruce in Newfoundland to N, P and K fertilization. For Chron 55:189–193Google Scholar
  111. Vasander H (1982) Plant biomass and production in virgin, drained and fertilized sites in a raised bog in southern Finland. Ann Bot Fenn 19:103–125Google Scholar
  112. Viereck LA, Johnston WF (1990) Black spruce. In: Burns RM, Honkala BH (eds) Silvics of North America. Agriculture handbook 654, vol 1. (Conifers). US Department of Agriculture, Washington, DC, pp 227–237Google Scholar
  113. Vitt DH (1990) Growth and production dynamics of boreal mosses over climatic, chemical and topographic gradients. Bot J Linn Soc 104:35–59Google Scholar
  114. Vitt DH, Wieder K, Halsey LA, Turetsky M (2002) Response of Sphagnum fuscum to nitrogen deposition:A case study of ombrogenous peatlands in Alberta, Canada. Bryologist 106:235–245CrossRefGoogle Scholar
  115. Wells ED (1993) Effects of planting spacing and refertilization on growth and nutrition of black spruce (Picea mariana (Mill.) B.S.P.) planted on a minerotrophic peatland in Newfoundland, Canada. Can J For Res 24:1302–1311CrossRefGoogle Scholar
  116. Wieder RK (2001) Past, present and future peatland carbon balance — an empirical model based on 210Pb-dated cores. Ecol Appl 11:321–342Google Scholar
  117. Wieder RK, Lang GE (1983) Net primary production of the dominant bryophytes in a Sphagnum-dominated wetland in West Virginia. Bryologist 86:280–286CrossRefGoogle Scholar
  118. Woodin SJ, Press MC, Lee JA (1985) Nitrate reductase activity in Sphagnum fuscum in relation to wet deposition of nitrate from the atmosphere. New Phytol 99:381–388CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • R. Kelman Wieder
    • 1
  1. 1.Department of BiologyVillanova UniversityVillanovaUSA

Personalised recommendations