The Postglacial Development of Boreal and Subarctic Peatlands

  • Peter Kuhry
  • Jukka Turunen
Part of the Ecological Studies book series (ECOLSTUD, volume 188)

3.8 Conclusions

Peatland development is controlled by both autogenic and allogenic factors. The processes of peat (sediment) accumulation and acidification by Sphagnum result in hydroseral successions towards drier and more oligotrophic conditions. Secondary pattern development is also largely initiated by local biotic factors, with the exception of permafrost landforms. Within boreal and subarctic peatland development, however, regional patterns arise from the influence of temperature and precipitation. Peat accumulation rates are higher in southern/boreal than in northern/subarctic peatlands. The incidence of fire and permafrost is more important in continental than oceanic areas. The increased use of remote sensing techniques is diminishing uncertainties related to total peatland surface area in boreal and subarctic regions, but regional assessments of peatland development and peat accumulation are still hindered by limited and biased sampling, especially in the more remote areas of the northern hemisphere (e.g., subarctic Canada and western Siberia).


Peat Deposit Peat Accumulation Peat Fire Peatland Area Boreal Peatlands 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arlen-Pouliot Y, Bhiry N (2005) Palaeoecology of a palsa and a filled thermokarst pond in a permafrost peatland, subarctic Québec, Canada. Holocene 15:408–419CrossRefGoogle Scholar
  2. Bauer IE (2002) Internal and external controls over Holocene peatland development in boreal western Canada. PhD thesis, University of Alberta, EdmontonGoogle Scholar
  3. Bauer IE, Gignac LD, Vitt DH (2003) Development of a peatland complex in boreal western Canada: lateral site expansion and local variability in vegetation succession and long-term peat accumulation. Can J Bot 81:833–847CrossRefGoogle Scholar
  4. Blyakharchuk TA, Sulerzhitsky LD (1999) Holocene vegetational and climatic changes in the forest zone of western Siberia according to pollen records from the extrazonal palsa bog Bugristoye. Holocene 9:621–628CrossRefGoogle Scholar
  5. Borren W, Bleuten W, Lapshina ED (2004) Holocene peat and carbon accumulation rates in the southern taiga of western Siberia. Quat Res 61:42–51CrossRefGoogle Scholar
  6. Botch MS, Masing VV (1983) Peatland ecosystems in the U.S.S.R. In: Gore AJP (ed) Ecosystems of the world 4B. Mires: swamp, bog, fen and moor. Regional studies. Elsevier, Amsterdam, pp 95–152Google Scholar
  7. Botch MS, Kobak KI, Vinson TS, Kolchugina TP (1995) Carbon pools and accumulation in peatlands of the former Soviet Union. Global Biogeochem Cycles 9:37–46CrossRefGoogle Scholar
  8. Brown RJE (1983) Effects of fire on the permafrost ground thermal regime. In: Wein RW, Maclean DA (eds) The role of fire in northern circumpolar ecosystems. Wiley, Chichester, pp 97–110Google Scholar
  9. Campbell ID, Campbell C, Yu Z, Vitt DH, Apps MJ (2000) Millennial scale rhythms in peatlands in the western interior of Canada and in the global carbon cycle. Quat Res 54:155–158CrossRefGoogle Scholar
  10. Carcaillet C, Richard PJH (2000) Holocene changes in seasonal precipitation highlighted by fire incidence in eastern Canada. Clim Dyn 16:549–559CrossRefGoogle Scholar
  11. Charman DJ (2002) Peatlands and environmental change. Wiley, ChichesterGoogle Scholar
  12. Clymo RS (1984) The limits to peat growth. Philos Trans R Soc Lond Ser B 303:605–654Google Scholar
  13. Clymo RS, Duckett JG (1986) Regeneration of Sphagnum. New Phytol 102:589–614CrossRefGoogle Scholar
  14. Clymo RS, Turunen J, Tolonen K (1998) Carbon accumulation in peatlands. Oikos 81:368–388Google Scholar
  15. Couillard L, Payette S (1985) évolution holocène d’une tourbière à pergélisol (Québec nordique). Can J Bot 63:1104–1121Google Scholar
  16. Dyke AS, Prest VK (1987) Late Wisconsinan and Holocene history of the Laurentide ice sheet. Geogr Phys Quat 41:237–263Google Scholar
  17. Elina GA, Kuznecov OL, Maksimov AI (1984) Strukturnofunktsional’naja organizatsija i dinamika bolotnyh ekosistem Karelii. Nauka, St PetersburgGoogle Scholar
  18. Foster DR, Jacobson HA (1990) The comparative development of bogs and fens in central Sweden: Evaluating the role of climate change and ecosystem development. Aquilo Ser Bot 28:15–26Google Scholar
  19. Foster DR, Wright HE Jr (1990) Role of ecosystem development and climate change in bog formation in central Sweden. J Ecol 71:450–463CrossRefGoogle Scholar
  20. Foster DR, King GA, Glaser PH, Wright HE Jr (1983) Origin of string patterns in boreal peatlands. Nature 306:256–258CrossRefGoogle Scholar
  21. Foster DR, Wright HE Jr, Thelaus M, King GA (1988) Bog development and landform dynamics in central Sweden and south-eastern Labrador, Canada. J Ecol 76:1164–1185CrossRefGoogle Scholar
  22. Glaser PH (1998) The distribution and origin of mire pools. In: Standen V, Tallis JH, Meade R (eds) Patterned mires and mire pools. British Ecological Society, London, pp 4–25Google Scholar
  23. Gorham E (1991) Northern peatlands: role in the carbon cycle and probable responses to climatic warming. Ecol Appl 1:182–195Google Scholar
  24. Grichuk VP (1984) Late Pleistocene vegetation history. In: Velichko AA (ed) Late quaternary environments of the Soviet Union. University of Minnesota Press, Minneapolis, pp 155–178Google Scholar
  25. Halsey LA, Vitt DH, Zoltai SC (1995) Disequilibrium response of permafrost in boreal continental western Canada to climate change. Clim Change 30:57–73CrossRefGoogle Scholar
  26. Halsey LA, Vitt DH, Gignac LD (2000) Sphagnum-dominated peatlands in North America since the Last Glacial Maximum: their occurrence and extent. Bryologist 103:334–352CrossRefGoogle Scholar
  27. Ikonen L (1993) Holocene development and peat growth of the raised bog Pesänsuo in southwestern Finland. Geol Surv Finl Bull 370Google Scholar
  28. Ingram HAP (1978) Soil layers in mires: function and terminology. J Soil Sci 29:224–227CrossRefGoogle Scholar
  29. Ivanov KE (1981) Water movement in mirelands. Translated by Thomson A, Ingram HAP from Ivanov KE (1975) Vodoobmen v bolotnykn landshafter. Academic, LondonGoogle Scholar
  30. Janssens JA (1983) Fossil bryophytes and paleoenvironmental reconstruction of peatlands. In: Glime JM (ed) Methods in bryology. Proceedings of the bryological methods workshop, Mainz. The Hattori Botanical Laboratory, Nichinan, Japan, pp 299–306Google Scholar
  31. Jasinski JPP, Warner BG, Andreev AA, Aravena R, Gilbert SE, Zeeb BA, Smol JP, Velichko AA (1998) Holocene environmental history of a peatland in the Lena River valley, Siberia. Can J Earth Sci 35:637–648CrossRefGoogle Scholar
  32. Johnson LC, Damman AWH (1991) Species-controlled Sphagnum decay on a south Swedish raised bog. Oikos 61:234–242Google Scholar
  33. Johnson LC, Damman AWH, Malmer N (1990) Sphagnum macrostructure as an indicator of decay and compaction in peat cores from an ombrotrophic south Swedish peat-bog. J Ecol 78:633–647CrossRefGoogle Scholar
  34. Kershaw GP, Gill D (1979) Growth and decay of palsas and peat plateaus in the Macmillan Pass-Tsichu River area, Northwest Territories, Canada. Can J Earth Sci 16:1362–1374Google Scholar
  35. Klarqvist M (2001) Peat growth and carbon accumulation rates during the Holocene in boreal mires. Acta Univ Agric Suec Silvestria 203Google Scholar
  36. Korhola A (1994) Radiocarbon evidence for rates of lateral expansion in raised peatlands in southern Finland. Quat Res 42:299–307CrossRefGoogle Scholar
  37. Korhola A (1995) Holocene climatic variations in southern Finland reconstructed from peat-initiation data. Holocene 5:43–58Google Scholar
  38. Korhola A (1996) Initiation of a sloping mire complex in southwestern Finland: Autogenic versus allogenic controls. écoscience 3:216–222Google Scholar
  39. Korhola A, Tolonen K (1996) The natural history of mires in Finland and the rate of peat accumulation. In: Vasander H (ed) Peatlands in Finland. Finnish Peatland Society, Helsinki pp. 20–26Google Scholar
  40. Korhola A, Alm J, Tolonen K, Turunen J, Jungner H (1996) Three-dimensional reconstruction of carbon accumulation and CH4 emission during nine millennia in a raised peatland. J Quat Sci 11:161–165CrossRefGoogle Scholar
  41. Kremenetski KV, Sulerzhitsky LD, Hantemirov R (1998) Holocene history of the northern range limit of some trees and shrubs in Russia. Arct Alp Res 30:317–333CrossRefGoogle Scholar
  42. Kremenetski KV, Velichko AA, Borisova OK, MacDonald GM, Smith LC, Frey KE, Orlova LA (2003) Peatlands of the Western Siberian lowlands: current knowledge on zonation, carbon content and Late Quaternary history. Quat Sci Rev 22:703–723CrossRefGoogle Scholar
  43. Kubiw H, Hickman M, Vitt DH (1989) The developmental history of peatlands at Muskiki and Marguerite lakes, Alberta. Can J Bot 67:3534–3544Google Scholar
  44. Kuhry P (1994) The role of fire in the development of Sphagnum-dominated peatlands in western Boreal Canada. J Ecol 82:899–910CrossRefGoogle Scholar
  45. Kuhry P (1997) The paleoecology of a treed bog in western boreal Canada: a study based on microfossils, macrofossils and physico-chemical properties. Rev Palaeobot Palynol 96:183–224CrossRefGoogle Scholar
  46. Kuhry P (1998) Late Holocene permafrost dynamics in two subarctic peatlands of the Hudson Bay Lowlands (Manitoba, Canada). Eurasian Soil Sci 31:529–534Google Scholar
  47. Kuhry P, Vitt DH (1996) Fossil carbon/nitrogen ratios as a measure of peat decomposition. Ecology 77:271–275CrossRefGoogle Scholar
  48. Kuhry P, Halsey LA, Bayley SE, Vitt DH (1992) Peatland development in relation to Holocene climatic change in Manitoba and Saskatchewan (Canada). Can J Earth Sci 29:1070–1090Google Scholar
  49. Kuhry P, Nicholson BJ, Gignac LD, Vitt DH, Bayley SE (1993) Development of Sphagnum-dominated peatlands in boreal continental Canada. Can J Bot 71:10–22CrossRefGoogle Scholar
  50. Lappalainen E (1996) Mires of Finland and their use. In: Lappalainen E (ed) Global peat resources. International Peat Society, Saarijärvi, pp 69–74Google Scholar
  51. Lavoie C, Payette S (1995) Analyse macrofossile d’une palse subarctique (Québec nordique). Can J Bot 78:668–684CrossRefGoogle Scholar
  52. Lavoie M, Richard PJH (2000a) The role of climate on the developmental history of Frontenac Peatland, southern Québec. Can J Bot 78:668–684CrossRefGoogle Scholar
  53. Lavoie M, Richard PJH (2000b) Paléoécologie de la tourbière du lac Malbaie, dans le massif des Laurentides (Québec): évaluation du rôle du climat sur l’accumulation de la tourbe. Geogr Phys Quat 54:169–185Google Scholar
  54. MacDonald GM, Beukens RP, Kieser WE, Vitt DH (1987) Comparative radiocarbon dating of terrestrial plant macrofossils and aquatic moss from the ice-free corridor of western Canada. Geology 15:837–840CrossRefGoogle Scholar
  55. Malmer N (1992) Peat accumulation and the global carbon cycle. Catena Suppl 22:97–110Google Scholar
  56. Malmer N, Wallén B (1993) Accumulation and release of organic matter in ombrotrophic bog hummocks — processes and regional variation. Ecography 16:193–211CrossRefGoogle Scholar
  57. Mangerud J, Svendsen JI, Astakhov VI (1999) Age and extent of the Barents and Kara ice sheets in northern Russia. Boreas 28:46–80CrossRefGoogle Scholar
  58. Muller SD, Richard PJH, Larouche AC (2003) Holocene development of a peatland (southern Québec): a spatio-temporal reconstruction based on pachymetry, sedimentology, microfossils and macrofossils. Holocene 13: 649–665CrossRefGoogle Scholar
  59. Mäkilä M (1997) Holocene lateral expansion, peat growth and carbon accumulation on Haukkasuo, a raised bog in southeastern Finland. Boreas 26:1–14CrossRefGoogle Scholar
  60. National Wetlands Working Group (1988) Wetlands of Canada. Ecological land classification series, 24. Environment Canada, Ottawa and Polyscience Publications, Montreal, QCGoogle Scholar
  61. Neustadt MI (1984) Holocene peatland development. In: Velichko AA (ed) Late Quaternary environments of the Soviet Union. University of Minnesota Press, Minneapolis, pp 201–206Google Scholar
  62. Nichols HN (1967) The post-glacial history of vegetation and climate at Ennadai Lake, Keewatin, and Lynn Lake, Manitoba (Canada). Eiszeitalter Geg 18:176–197Google Scholar
  63. Nicholson BJ, Vitt DH (1990) The paleoecology of a peatland complex in continental western Canada. Can J Bot 68:121–138Google Scholar
  64. Nicholson BJ, Vitt DH (1994) Wetland development at Elk Island National Park, Alberta, Canada. J Paleolimnol 12:19–34CrossRefGoogle Scholar
  65. Nilsson M, Klarqvist M, Bohlin E, Possnert G (2001) Variation in 14C age of macrofossils and different fractions of minute peat samples dated by AMS. Holocene 11:579–586CrossRefGoogle Scholar
  66. Oksanen PO (2002) Holocene permafrost dynamics in palsa and peat plateau mires of continental Europe. Licentiate thesis, University of OuluGoogle Scholar
  67. Oksanen PO (2006) Holocene development of the Vaisjeäggi palsa mire, Finnish Lapland. Boreas (in press)Google Scholar
  68. Oksanen PO, Kuhry P (2003) Permafrost induced changes in the hydrology and carbon balance of mires. In: Järvet E, Lode E (eds) Ecohydrological processes in northern wetlands. Tartu University Press, Tartu, pp 92–98Google Scholar
  69. Oksanen PO, Kuhry P, Alekseeva RN (2001) Holocene development of the Rogovaya River peat plateau, European Russian Arctic. Holocene 11:25–40CrossRefGoogle Scholar
  70. Oksanen PO, Kuhry P, Alekseeva RN (2003) Holocene development and permafrost history of the Usinsk mire, northeast European Russia. Geogr Phys Quat 57:169–187Google Scholar
  71. Ovenden L (1990) Peat accumulation in northern wetlands. Quat Res 33:377–386CrossRefGoogle Scholar
  72. Payette S (2001a) La stratigraphie. In: Payette S, Rochefort L (eds) Ecologie des tourbières du Québec-Labrador. Les Presses de l’Université Laval, Sainte-Foy, pp 345–370Google Scholar
  73. Payette S (2001b) Les principaux types de tourbières. In: Payette S, Rochefort L (eds) Ecologie des tourbières du Québec-Labrador. Les Presses de l’Université Laval, Sainte-Foy, pp 39–89Google Scholar
  74. Peteet D, Andree A, Bardeen W, Mistretta F (1998) Long-term Arctic peatland dynamics, vegetation and climate history of the Pur-Taz region, western Siberia. Boreas 27:115–126CrossRefGoogle Scholar
  75. Pitkänen A, Turunen J, Tolonen K (1999) The role of fire in the carbon dynamics of a peatland, eastern Finland. Holocene 9:453–462CrossRefGoogle Scholar
  76. P’yavchenko NI (1955) Permafrost peatlands. Academy of Sciences of the USSR, Moscow (in Russian)Google Scholar
  77. P’yavchenko NI (1985) On the age of peatbogs and sequences of vegetation in the south of West-Siberia. Bull Comm Quat Stud 52:164–170 (in Russian)Google Scholar
  78. Richard PJH (1981) Paléophytogéographie postglaciaire en Ungava par l’analyse pollinique. Paléo-Québec 13. University of Quebec at Montreal, MontrealGoogle Scholar
  79. Riley JL (1994) Peat and peatland resources of Northeastern Ontario. Ont Geol Surv Misc Pap 153:1–155Google Scholar
  80. Ritchie J (1976) The late Quaternary vegetational history of the western interior of Canada. Can J Bot 54:1793–1818CrossRefGoogle Scholar
  81. Robinson SD, Moore TR (1999) Carbon and peat accumulation over the past 1200 years in a landscape with discontinuous permafrost, northwestern Canada. Global Biogeochem Cycles 13:591–601CrossRefGoogle Scholar
  82. Robinson SD, Moore TR (2000) The influence of permafrost and fire upon carbon accumulation in high boreal peatlands, Northwest Territories, Canada. Arct Antarct Alp Res 32:155–166CrossRefGoogle Scholar
  83. Salmi M (1968) Development of palsas in Finnish Lapland. Proceedings of the 3rd international peat congress, Quebec, pp 182–189Google Scholar
  84. Salmi M (1972) Present developmental stages of palsas in Finland. The proceedings of the 4th international peat congress, vol 1, Otaniemi, pp 121–141Google Scholar
  85. Scheffer RA, van Logtestijn RSP, Verhoeven JTA (2001) Decomposition of Carex and Sphagnum litter in two mesotrophic fens differing in dominant plant species. Oikos 92:44–54CrossRefGoogle Scholar
  86. Seppälä M (1988) Palsas and related forms. In: Clark MJ (ed) Advances in periglacial geomorphology. Wiley, Chichester, pp 247–278Google Scholar
  87. Seppälä M, Koutaniemi L (1985) Formation of a string and pool topography as expressed by morphology, stratigraphy and current processes on a peatland in Kuusamo, Finland. Boreas 14:287–309CrossRefGoogle Scholar
  88. Sjörs, H (1959) Bogs and fens in the Hudson Bay lowlands. J Arct Inst North Am 12:1–19Google Scholar
  89. Sjörs, H (1983) Mires of Sweden. In: Gore AJP (ed) Ecosystems of the world 4B. Mires: swamp, bog, fen and moor. Regional studies. Elsevier, Amsterdam, pp 69–94Google Scholar
  90. Sonesson M (1968) Pollen zones at Abisko, Torne Lappmark, Sweden. Bot Not 121:491–500Google Scholar
  91. Svensson G (1988) Bog development and environmental conditions as shown by the stratigraphy of Store Mosse mire in southern Sweden. Boreas 17:89–111CrossRefGoogle Scholar
  92. Szumigalski AR, Bayley SE (1996) Decomposition along a bog to rich fen gradient in central Alberta, Canada. Can J Bot 74:573–581CrossRefGoogle Scholar
  93. Tolonen K (1966) Stratigraphic and rhizopod analyses on an old raised bog, Varransuo, in Hollola, South Finland. Ann Bot Fenn 3:147–166Google Scholar
  94. Tolonen K (1967) Über die Entwicklung der Moore im finnischen Nord-Karelien. Ann Bot Fenn 4:219–416Google Scholar
  95. Tolonen K, Turunen J (1996) Accumulation rates of carbon in peatlands in Finland and implications for climate change. Holocene 6:171–178Google Scholar
  96. Tolonen K, Davis RB, Widoff L (1988) Peat accumulation rates in selected Maine peat deposits. Maine Geol Surv Dep Conserv Bull 33:1–99Google Scholar
  97. Tolonen M (1985) Paleoecological record of local fire history from a peat deposit in SW Finland. Ann Bot Fenn 22:15–29Google Scholar
  98. Turetsky MR, Wieder RK, Williams CJ, Vitt DH (2000) Organic matter accumulation, peat chemistry, and permafrost melting in peatlands of boreal Alberta. Écoscience 7:379–392Google Scholar
  99. Turetsky MR, Wieder RK, Halsey L, Vitt DH (2002) Current disturbance and the diminishing peatland carbon sink. Geophys Res Lett 29. DOI 10.1029/2001GL 014000Google Scholar
  100. Turunen C, Turunen J (2003) Development history and carbon accumulation of a slope bog in oceanic British Columbia, Canada. Holocene 13:225–238CrossRefGoogle Scholar
  101. Turunen J, Tahvanainen T, Tolonen K, Pitkänen A (2001) Carbon accumulation in West Siberian peatlands, Russia. Global Biogeochem Cycles 15:285–296CrossRefGoogle Scholar
  102. Turunen J, Tomppo E, Tolonen K, Reinikainen A (2002) Estimating carbon accumulation rates of undrained peatlands in Finland: application to boreal and subarctic regions. Holocene 12:69–80CrossRefGoogle Scholar
  103. Väliranta M, Kaakinen A, Kuhry P (2003) Holocene climate and landscape evolution east of the Pechora Delta, east-European Russian Arctic. Quat Res 59:335–344CrossRefGoogle Scholar
  104. Vardy SR, Warner BG, Turunen J, Aravena R (2000) Carbon accumulation in permafrost peatlands in the Northwestern Territories and Nunavut, Canada. Holocene 10:273–280CrossRefGoogle Scholar
  105. Vitt DA, Halsey, LA, Bauer, IE, Campbell, C (2000) Spatial and temporal trends in carbon storage of peatlands of continental western Canada through the Holocene. Can J Earth Sci 37:683–693CrossRefGoogle Scholar
  106. Walter H (1977) The oligotrophic peatlands of western Siberia — the largest peinohelobiome in the world. Vegetatio 34 167–178CrossRefGoogle Scholar
  107. Walter H (1985) Vegetation of the earth and ecological systems of the geo-biosphere, 3rd edn. Springer, Berlin Heidelberg New YorkGoogle Scholar
  108. Warner BG, Charman DJ (1994) Holocene changes on a peatland in northwestern Ontario interpreted from testate amebas (Protozoa) analysis. Boreas 23:270–279CrossRefGoogle Scholar
  109. Warner BG, Clymo RS, Tolonen K (1993) Implications of peat accumulation at Point Escuminac, New Brunswick. Quat Res 39:245–248CrossRefGoogle Scholar
  110. Wieder RK, Novak M, Schell WR, Rhodes T (1994) Rates of peat accumulation over the past 200 years in five Sphagnum-dominated peatlands in the United States. J Paleolimnol 12:35–47CrossRefGoogle Scholar
  111. Yu ZC, Campbell ID, Campbell C, Vitt DH, Bond GC, Apps MJ (2003a) Carbon sequestration in western Canadian peat highly sensitive to Holocene wet-dry climate cycles at millenial timescales. Holocene 13:801–808CrossRefGoogle Scholar
  112. Yu ZC, Vitt DH, Campbell ID, Apps MJ (2003b) Understanding Holocene peat accumulation pattern of continental fens in western Canada. Can J Bot 81:267–282CrossRefGoogle Scholar
  113. Zoltai SC (1993) Cyclic development of permafrost in the peatlands of northwestern Alberta, Canada. Arct Alp Res 25:240–246CrossRefGoogle Scholar
  114. Zoltai SC (1995) Permafrost distribution in peatlands of west-central Canada during the Holocene warm period 6000 years BP. Geogr Phys Quat 49:37–43Google Scholar
  115. Zoltai SC, Vitt DH (1990) Holocene climatic change and the distribution of peatlands in western interior Canada. Quat Res 33:231–240CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Peter Kuhry
    • 1
  • Jukka Turunen
    • 2
  1. 1.Department of Physical Geography and Quaternary GeologyStockholm UniversityStockholmSweden
  2. 2.Kuopio UnitGeological Survey of Finland (GTK)KuopioFinland

Personalised recommendations