Skip to main content

Effects of Removing Overlapping Solutions on the Performance of the NSGA-II Algorithm

  • Conference paper
Evolutionary Multi-Criterion Optimization (EMO 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3410))

Included in the following conference series:

Abstract

The focus of this paper is the handling of overlapping solutions in evolutionary multiobjective optimization (EMO) algorithms. In the application of EMO algorithms to some multiobjective combinatorial optimization problems, there exit a large number of overlapping solutions in each generation. We examine the effect of removing overlapping solutions on the performance of EMO algorithms. In this paper, overlapping solutions are removed from the current population except for a single solution. We implement two removal strategies of overlapping solutions. One is the removal of overlapping solutions in the objective space. In this strategy, one solution is randomly chosen among the overlapping solutions with the same objective vector and left in the current population. The other overlapping solutions with the same objective vector are removed from the current population. As a result, each solution in the current population has a different location in the objective space. It should be noted that the overlapping solutions in the objective space are not necessary the same solution in the decision space. Thus we also examine the other strategy where the overlapping solutions in the decision space are removed from the current population except for a single solution. As a result, each solution in the current population has a different location in the decision space. The effect of removing overlapping solutions is examined through computational experiments where each removal strategy is combined into the NSGA-II algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Coello Coello, C.A., Van Veldhuizen, D.A., Lamont, G.B.: Evolutionary Algorithms for Solving Multi-Objective Problems. Kluwer Academic Publishers, Boston (2002)

    MATH  Google Scholar 

  2. Deb, K.: Multi-Objective Optimization Using Evolutionary Algorithms. John Wiley & Sons, Chichester (2001)

    MATH  Google Scholar 

  3. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II. IEEE Trans. on Evolutionary Computation 6, 182–197 (2002)

    Article  Google Scholar 

  4. Deb, K., Thiele, L., Laumanns, M., Zitzler, E.: Scalable Multiobjective Optimization Test Problems. In: Proc. of 2002 Congress on Evolutionary Computation, pp. 825–830 (2002)

    Google Scholar 

  5. Ishibuchi, H., Murata, T.: A Multi-Objective Genetic Local Search Algorithm and Its Application to Flowshop Scheduling. IEEE Trans. on Systems, Man, and Cybernetics - Part C: Applications and Reviews 28, 392–403 (1998)

    Article  Google Scholar 

  6. Ishibuchi, H., Yamamoto, T.: Effects of Three-Objective Genetic Rule Selection on the Generalization Ability of Fuzzy Rule-Based Systems. In: Fonseca, C.M., Fleming, P.J., Zitzler, E., Deb, K., Thiele, L. (eds.) EMO 2003. LNCS, vol. 2632, pp. 608–622. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  7. Ishibuchi, H., Yamamoto, T.: Fuzzy Rule Selection by Multi-Objective Genetic Local Search Algorithms and Rule Evaluation Measures in Data Mining. Fuzzy Sets and Systems 141, 59–88 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  8. Ishibuchi, H., Yoshida, T., Murata, T.: Balance between Genetic Search and Local Search in Memetic Algorithms for Multiobjective Permutation Flowshop Scheduling. IEEE Trans. on Evolutionary Computation 7, 204–223 (2003)

    Article  Google Scholar 

  9. Jaszkiewicz, A.: Comparison of Local Search-based Metaheuristics on the Multiple Objective Knapsack Problem. Foundations of Computing and Decision Sciences 26, 99–120 (2001)

    Google Scholar 

  10. Jaszkiewicz, A.: On the Performance of Multiple-Objective Genetic Local Search on the 0/1 Knapsack Problem - A Comparative Experiment. IEEE Trans. on Evolutionary Computation 6, 402–412 (2002b)

    Article  Google Scholar 

  11. Knowles, J.D., Corne, D.W.: On Metrics for Comparing Non-dominated Sets. In: Proc. of 2002 Congress on Evolutionary Computation, pp. 711–716 (2002)

    Google Scholar 

  12. Okabe, T., Jin, Y., Sendhoff, B.: A Critical Survey of Performance Indices for Multi-Objective Optimization. In: Proc. of 2003 Congress on Evolutionary Computation, pp. 878–885 (2003)

    Google Scholar 

  13. Zitzler, E., Thiele, L.: Multiobjective Evolutionary Algorithms: A Comparative Case Study and the Strength Pareto Approach. IEEE Trans. on Evolutionary Computation 3, 257–271 (1999)

    Article  Google Scholar 

  14. Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C.M., da Fonseca, V.G.: Performance Assessment of Multiobjective Optimizers: An Analysis and Review. IEEE Trans. on Evolutionary Computation 7, 117–132 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Nojima, Y., Narukawa, K., Kaige, S., Ishibuchi, H. (2005). Effects of Removing Overlapping Solutions on the Performance of the NSGA-II Algorithm. In: Coello Coello, C.A., Hernández Aguirre, A., Zitzler, E. (eds) Evolutionary Multi-Criterion Optimization. EMO 2005. Lecture Notes in Computer Science, vol 3410. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-31880-4_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-31880-4_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-24983-2

  • Online ISBN: 978-3-540-31880-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics