Skip to main content

The PIGs Full Monty – A Floor Show of Minimal Separators

  • Conference paper
STACS 2005 (STACS 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3404))

Included in the following conference series:

Abstract

Given a class of graphs \(\mathcal{G}\), a graph G is a probe graph of \(\mathcal{G}\) if its vertices can be partitioned into two sets ℙ (the probes) and ℕ (non–probes), where ℕ is an independent set, such that G can be embedded into a graph of \(\mathcal{G}\) by adding edges between certain vertices of ℕ. We show that the recognition problem of probe interval graphs, i.e., probe graphs of the class of interval graphs, is in P.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Berry, A., Golumbic, M.C., Lipshteyn, M.: Recognizing and triangulating chordal probe graphs. Research Report LIMOS/RR–03–08, July 4 (2003)

    Google Scholar 

  2. Berry, A., Golumbic, M.C., Lipshteyn, M.: Two tricks to triangulate chordal probe graphs in polynomial time. In: Proceedings 15th ACM–SIAM Symposium on Discrete Algorithms, pp. 962–969 (2004)

    Google Scholar 

  3. Booth, K.S., Lueker, G.S.: Testing for the consecutive ones property, interval graphs, and graph planarity using PQ–tree algorithms. Journal of Computer and System Sciences 13, 335–379 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bouchitté, V., Todinca, I.: Treewidth and minimum fill-in of weakly triangulated graphs. In: Meinel, C., Tison, S. (eds.) STACS 1999. LNCS, vol. 1563, pp. 197–206. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  5. Brändstadt, A., Le, V., Spinrad, J.P.: Graph classes: A survey. In: SIAM Monographs on Discrete Mathematics and Applications, Philadelphia (1999)

    Google Scholar 

  6. Chudnovsky, M., Seymour, P., Robertson, N., Thomas, R.: The strong perfect graph theorem (2002) (manuscript)

    Google Scholar 

  7. Földes, S., Hammer, P.L.: Split graphs. Congressus Numerantium 19, 311–315 (1977)

    Google Scholar 

  8. Gilmore, P.C., Hoffman, A.J.: A characterization of comparability graphs and of interval graphs. Canad. J. Math. 16, 539–548 (1964)

    Article  MATH  MathSciNet  Google Scholar 

  9. Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs. Academic Press, New York (1980)

    MATH  Google Scholar 

  10. Golumbic, M.C., Trenk, A.N.: Tolerance graphs. Cambridge University Press, Cambridge (2003)

    Google Scholar 

  11. Golumbic, M.C., Lipshsteyn, M.: Chordal probe graphs. In: Bodlaender, H.L. (ed.) WG 2003. LNCS, vol. 2880, pp. 249–260. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  12. Hammer, P.L., Simeone, B.: The splittance of a graph. Combinatorica 1, 275–284 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  13. Hayward, R.B.: Weakly triangulated graphs. J. Combin. Theory B 39, 200–208 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  14. Hayward, R.B., Hoáng, C., Maffray, F.: Optimizing weakly triangulated graphs. Graphs and Combinatorics 5, 33–35 (1990)

    Article  Google Scholar 

  15. Johnson, J.L., Spinrad, J.: A polynomial time recognition algorithm for probe interval graphs. In: Proceedings 12th ACM–SIAM Symposium on Discrete Algorithms, pp. 477–486 (2001)

    Google Scholar 

  16. McConnell, R.M., Spinrad, J.: Construction of probe interval graphs. In: Proceedings 13th ACM–SIAM Symposium on Discrete Algorithms, pp. 866–875 (2002)

    Google Scholar 

  17. McMorris, F.R., Wang, C., Zhang, P.: On probe interval graphs. Discrete Applied Mathematics 88, 315–324 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  18. Sheng, L.: Cycle free probe interval graphs. Congressus Numerantium 140, 33–42 (1999)

    MATH  MathSciNet  Google Scholar 

  19. Zhang, P.: Probe interval graph and its application to physical mapping of DNA (1994) (manuscript)

    Google Scholar 

  20. Zhang, P., Schon, E.A., Fisher, S.G., Cayanis, E., Weiss, J., Kistler, S., Bourne, P.E.: An algorithm based on graph theory for the assembly of contigs in physical mapping of DNA. CABIOS 10, 309–317 (1994)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chang, G.J., Kloks, A.J.J., Liu, J., Peng, SL. (2005). The PIGs Full Monty – A Floor Show of Minimal Separators. In: Diekert, V., Durand, B. (eds) STACS 2005. STACS 2005. Lecture Notes in Computer Science, vol 3404. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-31856-9_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-31856-9_43

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-24998-6

  • Online ISBN: 978-3-540-31856-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics