Advertisement

The Finite Element Method for the Navier-Stokes Equations for a Viscous Heat Conducting Gas

  • E. D. Karepova
  • A. V Malyshev
  • V. V. Shaidurov
  • G. I. Shchepanovskaya
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3401)

Abstract

A boundary value problem for the Navier-Stokes equations for a viscous heat conducting gas in a finite computational domain is considered. The space approximation is constructed with the use of the Bubnov-Galerkin method combined with the method of lines.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Rannacher, R.: Finite element method for the incompressible Navier-Stokes equations. In: Galdi, G., Heywood, J.G., Rannacher, R. (eds.) Fundamental directions in mathematical fluid mechanics. Birkhauser Verlag, Berlin (2000)Google Scholar
  2. 2.
    Shaidurov, V.V., Shchepanovskaya, G.I.: Mathematical and numerical modeling of nonstationary propagation of a pulse of high-power energy in a viscous heat conducting gas. In: Part I. Mathematical formulation of the problem. – Krasnoyarsk: Institute of Computational Modeling of Russian Academy of Sciences, 50 p. (2003) (Deposited in VINITI 24.10.03, 1860–B2003)Google Scholar
  3. 3.
    Karepova, E.D., Shaidurov, V.V.: The numerical solution of the Navier-Stokes equations for a viscous heat conducting gas. In: Part II. Space approximation by the finite element method. – Krasnoyarsk: Institute of Computational Modeling of Russian Academy of Sciences, 70 p. (2004) (Deposited in VINITI 13.01.04, 58–B2004) Google Scholar
  4. 4.
    Samarskii, A.A., Vabishchevich, P.N.: Numerical methods for solving problems of convection-diffusion. Publishers of scientific and educational literature, Moscow (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • E. D. Karepova
    • 1
  • A. V Malyshev
    • 1
  • V. V. Shaidurov
    • 1
  • G. I. Shchepanovskaya
    • 1
  1. 1.Institute of Computational Modelling SB RASKrasnoyarskRussia

Personalised recommendations