An Algorithm to Find Values of Minors of Skew Hadamard and Conference Matrices

  • C. Kravvaritis
  • E. Lappas
  • M. Mitrouli
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3401)


We give an algorithm to obtain formulae and values for minors of skew Hadamard and conference matrices. One step in our algorithm allows the (nj) × (nj) minors of skew Hadamard and conference matrices to be given in terms of the minors of a 2 j − 1 × 2 j − 1 matrix. In particular we illustrate our algorithm by finding explicitly all the (n-3) × (n-3) minors of such matrices.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Geramita, A.V., Seberry, J.: Orthogonal Designs: Quadratic Forms and Hadamard Matrices. Marcel Dekker, New York (1979)zbMATHGoogle Scholar
  2. 2.
    Koukouvinos, C., Lappas, E., Mitrouli, M., Seberry, J.: An algorithm to find formulae and values of minors for Hadamard matrices: II. Linear Algebra and its Applications 371, 111–124 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Koukouvinos, C., Mitrouli, M., Seberry, J.: Growth in Gaussian elimination for weighing matrices, W(n,n − 1). Linear Algebra and its Appl. 306, 189–202 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Seberry Wallis, J.: Hadamard matrices. In: Wallis, W.D., Street, A.P., Wallis, J.S. (eds.) Part IV, Combinatorics: Room Squares, Sum-Free Sets and Hadamard Matrices. Lecture Notes in Mathematics, vol. 292. Springer, Heidelberg (1972)Google Scholar
  5. 5.
    Sharpe, F.R.: The maximum value of a determinant. Bull. Amer. Math. Soc. 14, 121–123 (1907)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Wilkinson, J.H.: Error analysis of direct methods of matrix inversion. J. Assoc. Comput. Mach. 8, 281–330 (1961)zbMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • C. Kravvaritis
    • 1
  • E. Lappas
    • 2
  • M. Mitrouli
    • 1
  1. 1.Department of MathematicsUniversity of Athens, PanepistimiopolisAthensGreece
  2. 2.Department of MathematicsNational Technical University of Athens, ZografouAthensGreece

Personalised recommendations