Advertisement

Volterra Series and Numerical Approximations of ODEs

  • Nikolay Kirov
  • Mikhail Krastanov
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3401)

Abstract

A numerical approach for solving systems of nonautonomous ordinary differential equations (ODEs) is proposed under suitable assumptions. This approach is based on expansion of the solutions of ODEs by Volterra series and allows to estimate the distance between the obtained approximation and the true trajectory.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Agrachev, A., Gamkrelidze, R.: The exponential representation of flows and the chronological calculus. Math. USSR Sbornik 107, 467–532 (1978)MathSciNetGoogle Scholar
  2. 2.
    Boscain, U., Piccoli, B.: A Short Introduction to Optimal Control. Lecture Notes for the CIMPA School, Tlemcen, Algeria (2003)Google Scholar
  3. 3.
    Clarke, F., Ledyaev, Y., Stern, R., Wolenski, P.: Nonsmooth analysis and control theory. In: Graduate text in Mathematics, vol. 178. Springer, Heidelberg (1998)Google Scholar
  4. 4.
    Dontchev, A., Lempio, F.: Difference methods for differential inclusions. SIAM J. Review 34, 263–294 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Grüne, L., Kloeden, P.: Higher order numerical schemes for affinely controlled nonlinear systems. Numer. Math. 89, 669–690 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Grüne, L., Kloeden, P.E.: Numerical schemes of higher order for a class of nonlinear control systems. In: Dimov, I.T., Lirkov, I., Margenov, S., Zlatev, Z. (eds.) NMA 2002. LNCS, vol. 2542, pp. 213–220. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  7. 7.
    Isidori, A.: Nonlinear control systems. An introduction. Springer, Heidelberg (1995)Google Scholar
  8. 8.
    Krastanov, M., Kirov, N.: Dynamic Interactive System for Analysis of Linear Differential Inclusions. In: Kurzhanski, A., Veliov, V. (eds.) Modelling techniques for uncertain systems, pp. 123–130. Birkhäuser, Basel (1994)Google Scholar
  9. 9.
    Veliov, V.: On the time discretization of control systems. SIAM J. Control Optim. 35, 1470–1486 (1997)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Nikolay Kirov
    • 1
  • Mikhail Krastanov
    • 1
  1. 1.Institute of Mathematics and InformaticsBulgarian Academy of SciencesSofia

Personalised recommendations