Advertisement

High Precision Method for Calculating the Energy Values of the Hydrogen Atom in a Strong Magnetic Field

  • M. G. Dimova
  • M. S. Kaschiev
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3401)

Abstract

The new method for calculating the energy values of the hydrogen atom in a strong magnetic field (0 ≤ B ≤ 1013 G ) with high degree of accuracy is developed in this paper. The proposed method is based on the Kantorovich method for solving eigenvalue problems. This method successfully reduces the given two dimensional spectral problem for the Schrödinger equation to the spectral problems for one one-dimensional equation and the system of ordinary second-order differential equations. The rate of convergence is examined numerically and is illustrated in the table. The results are in good agreement with the best one up to now and show that 12 significant digits are computed in the obtaining energy values.

Keywords

Hydrogen Atom Matrix Element Eigenvalue Problem Element Matrice Radial Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abrashkevich, A.G., Abrashkevich, D.G., Kaschiev, M.S., Puzynin, I.V.: Finite element solution of the couple - channel Schrödinger equation using high - order accuracy approximation. Comput. Phys. Commun. 85, 40–65 (1995)zbMATHCrossRefGoogle Scholar
  2. 2.
    Abrashkevich, A.G., Abrashkevich, D.G., Kaschiev, M.S., Puzynin, I.V., Vinitsky, S.I.: HSEIGV - A Program for Computing Energy Levels and Radial Wave Functions in the Coupled-Channel Hyperspherical Adiabatic Approach (JINR Communications No E11-97-335, Dubna (1997)Google Scholar
  3. 3.
    Abrashkevich, A.G., Kaschiev, M.S., Vinitsky, S.I.: A new method for solving an eigenvalue problem for a system of three Coulomb particles within the hyperspherical adiabatic representation. J. Comput. Physics 163, 328–348 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Abrashkevich, A.G., Vinitsky, S.I., Kaschiev, M.S., Puzynin, I.V.: Two-dimentional basis for three-body problem in hyperspherical coordinates. Sov. J. Nucl. Phys. 48, 945–955 (1988)Google Scholar
  5. 5.
    Bathe, K.J.: Finite Element Procedures in Engineering Analysis. Prentice-Hall, Englewood Cliffs (1982)Google Scholar
  6. 6.
    Chen, Z., Goldman, S.P.: Relativistic calculations for hydrogenic atoms in strong magnetic fields with Slater-type basis functions. Phys. Rev. A 44, 4459–4463 (1991)CrossRefGoogle Scholar
  7. 7.
    Chen, Z., Goldman, S.P.: Relativistic and nonrelativistic finite-basis-set calculations of low-lying levels of hydrogenic atoms in intense magnetic fields. Phys. Rev. A 45, 1722–1731 (1992)CrossRefGoogle Scholar
  8. 8.
    Chen, Z., Goldman, S.P.: Relativistic variational calculations with finite nuclear size: Application to hydrogenic atoms in strong magnetic fields. Phys. Rev. A 48, 1107–1113 (1993)CrossRefGoogle Scholar
  9. 9.
    Ivanov, M.V.: The hydrogen atom in a magnetic field of intermediate strength. J. Phys. B 21, 447–462 (1988)CrossRefGoogle Scholar
  10. 10.
    Kantorovich, L.V., Krilov, V.I.: Approximate Methods of Higher Analysis. Wiley, New York (1964); (Gostekhteorizdat, Moscow, 1952)Google Scholar
  11. 11.
    Kaschiev, M.S., Vinitsky, S.I., Vukajlovic, F.R.: Hydrogen atom H and \(H_2^+\) molecule in strong magnetic fields. Phys. Rev. A 22, 557–559 (1980)CrossRefGoogle Scholar
  12. 12.
    Kravchenko, Y.P., Liberman, M.A., Johanson, B.: Exact solution for a hydrogen atom in a magnetic field of arbitrary strength. Phys. Rev. A 54, 287–305 (1996)CrossRefGoogle Scholar
  13. 13.
    Rösner, W., Wunner, G., Herold, H., Ruder, H.: Hydrogen atoms in arbitrary magnetic fields. I. Energy levels and wavefunctions. J. Phys. B 17, 29–52 (1986)Google Scholar
  14. 14.
    Rech, P.C., Gallas, M.R., Gallas, J.A.C.: Zeeman diamagnetism in hydrogen at arbitrary field strengths. J. Phys. B 19, L215–L219 (1986)CrossRefGoogle Scholar
  15. 15.
    Ruder, H., Wunner, G., Herold, H., Geyer, F.: Atoms in Strong Magnetic Fields. Springer, Berlin (1994)Google Scholar
  16. 16.
    Shertzer, J.: Finite-element analysis of hydrogen in superstrong magnetic fields. Phys. Rev. A 39, 3833–3835 (1989)CrossRefGoogle Scholar
  17. 17.
    Shertzer, J., Ram-Mohan, L.R., Dossa, D.: Finite-element calculation of low-lying states of hydrogen in a superstrong magnetic field. Phys. Rev. A 40, 4777–4780 (1989)CrossRefGoogle Scholar
  18. 18.
    Strang, G., Fix, G.J.: An Analysis of the Finite Element Method. Prentice-Hall, Englewood Cliffs (1973)zbMATHGoogle Scholar
  19. 19.
    Xi, J., He, X., Li, B.: Energy levels of the hydrogen atom in arbitrary magnetic fields obtained by using B-spline basis sets. Phyz. Rev. A 46, 5806–5811 (1992)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • M. G. Dimova
    • 1
  • M. S. Kaschiev
    • 1
    • 2
  1. 1.Institute of Mathematics and InformaticsSofiaBulgaria
  2. 2.South West UniversityBlagoevgradBulgaria

Personalised recommendations