Advertisement

New Perturbation Bounds for the Continuous-Time H ∞ -Optimization Problem

  • N. D. Christov
  • M. M. Konstantinov
  • P. Hr. Petkov
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3401)

Abstract

A complete perturbation analysis of the H  ∞ -optimization problem for continuous-time linear systems is presented. Both local and nonlocal perturbation bounds are obtained, which are less conservative than the existing perturbation estimates.

Keywords

Condition Number Riccati Equation Perturbation Analysis Frobenius Norm Local Bound 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kwakernaak, H.: Robust control and H  ∞ -optimization – Tutorial paper. Automatica 29, 255–273 (1993)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Kantorovich, L.V., Akilov, G.P.: Functional Analysis in Normed Spaces. Nauka, Moskow (1977)Google Scholar
  3. 3.
    Christov, N.D., Gu, D.W., Konstantinov, M.M. Petkov, P.H., Postlethwaite, I.: Perturbation Bounds for the Continuous H  ∞  Optimisation Problem. In: LUED Rpt. 95-6, Dept. of Engineering, Leicester University, UK (1995)Google Scholar
  4. 4.
    Konstantinov, M.M., Petkov, P.H., Christov, N.D.: Conditioning of the continuous-time H  ∞  optimisation problem. In: Proc. 3rd European Control Conf., Rome, vol. 1, pp. 613–618 (1995)Google Scholar
  5. 5.
    Konstantinov, M.M., Petkov, P.H., Christov, N.D., Gu, D.W., Mehrmann, V.: Sensitivity of Lyapunov equations. In: Mastorakis, N.E. (ed.) Advances in Intelligent Systems and Computer Science, pp. 289–292. World Scientific and Engineering Society Press, Singapore (1999)Google Scholar
  6. 6.
    Konstantinov, M.M., Petkov, P.H., Gu, D.W.: Improved perturbation bounds for general quadratic matrix equations. Numer. Func. Anal. Optimiz. 20, 717–736 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Grebenikov, E.A., Ryabov, Y.A.: Constructive Methods for the Analysis of Nonlinear Systems. Nauka, Moscow (1979)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • N. D. Christov
    • 1
  • M. M. Konstantinov
    • 2
  • P. Hr. Petkov
    • 1
  1. 1.Technical University of SofiaSofiaBulgaria
  2. 2.University of Architecture and Civil EngineeringSofiaBulgaria

Personalised recommendations