Advertisement

A Quasi-Monte Carlo Method for an Elastic Electron Back-Scattering Problem

  • Emanouil I. Atanassov
  • Mariya K. Durchova
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3401)

Abstract

The elastic electron back-scattering is a problem that is important for many theoretical and experimental techniques, especially in the determination of the inelastic mean free paths. This effect arises when a monoenergetic electron beam bombards a solid target and some of the electrons are scattered without energy loss.The description of the flow can be written as an integral equation and may be solved by Monte Carlo methods.

In this paper we investigate the possibility of improving the convergence of the Monte Carlo algorithm by using scrambled low-discrepancy sequences. We demonstrate how by taking advantage of the smoothness of the differential elastic-scattering cross-section a significant decrease of the error is achieved. We show how the contribution of the first few collisions to the result can be evaluated by an appropriate integration method instead of direct simulation, which further increases the accuracy of our computations without increase of the computational time. In order to facilitate these techniques, we use spline approximation of the elastic cross-section, which is more accurate than the widely used tables of Jablonski.

Keywords

Monte Carlo Algorithm Spline Approximation Halton Sequence Sobol Sequence Monoenergetic Electron Beam 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Atanassov, E.: A New Efficient Algorithm for Generating the Sobol Sequences with Scrambling. In: Dimov, I.T., Lirkov, I., Margenov, S., Zlatev, Z. (eds.) NMA 2002. LNCS, vol. 2542, pp. 83–90. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  2. 2.
    Atanassov, E., Dimov, I.: A new optimal Monte Carlo method for calculating integrals of smooth functions. Monte Carlo Methods and Applications 5(2), 149–167 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Atanassov, E., Dimov, I., Dubus, A.: A new weighted Monte Carlo algorithm for elastic electron backscattering from surfaces. Math. and Comp. in Sim. 62(3-6), 297–305 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Atanassov, E.I., Dimov, I.T., Durchova, M.K.: A New Quasi-Monte Carlo Algorithm for Numerical Integration of Smooth Functions. In: Lirkov, I., Margenov, S., Waśniewski, J., Yalamov, P. (eds.) LSSC 2003. LNCS, vol. 2907, pp. 128–135. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  5. 5.
    Atanassov, E.I., Durchova, M.K.: Generating and Testing the Modified Halton Sequences. In: Dimov, I.T., Lirkov, I., Margenov, S., Zlatev, Z. (eds.) NMA 2002. LNCS, vol. 2542, pp. 91–98. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  6. 6.
    Bachvalov, N.S.: On the approximate computation of multiple integrals. Vestnik Moscow State University, Ser. Mat., Mech. 4, 3–18 (1959)Google Scholar
  7. 7.
    Bachvalov, N.S.: Average Estimation of the Remainder Term of Quadrature Formulas. USSR Comput. Math. and Math. Phys. 1(1), 64–77 (1961)Google Scholar
  8. 8.
    Dimov, I.T., Atanassov, E.I., Durchova, M.K.: An improved Monte Carlo Algorithm for Elastic Electron Backscattering from Surfaces. In: Margenov, S., Waśniewski, J., Yalamov, P. (eds.) LSSC 2001. LNCS, vol. 2179, pp. 141–148. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  9. 9.
    Drmota, M., Tichy, R.F.: Sequences, Discrepancies and Applications. Lecture Notes on Mathematics, vol. 1651. Springer, Berlin (1997)zbMATHGoogle Scholar
  10. 10.
    Dubus, A., Jablonski, A., Tougaard, S.: Evaluation of theoretical models for elastic electron backscattering from surfaces. Prog. Surf. Sci. 63, 135–175 (2000)CrossRefGoogle Scholar
  11. 11.
    Jablonski, A.: NIST Electron Elastic Scattering Cross-Section Database, Version 3.0, http://www.nist.gov/srd
  12. 12.
    NIST Electron Inelastic-Mean-Free-Path Database: Version 1.1, http://www.nist.gov/srd/nist71.htm
  13. 13.
    Jablonski, A.: Elastic Scattering and Quantification in AES and XPS. Surf. Interf. Anal. 14, 659 (1989)CrossRefGoogle Scholar
  14. 14.
    Kuipers, L., Niederreiter, H.: Uniform distribution of sequences. John Wiley & Sons, New York (1974)zbMATHGoogle Scholar
  15. 15.
    Owen, A.B.: Scrambled Net Variance for Integrals of Smooth Functions. Annals of Statistics 25(4), 1541–1562Google Scholar
  16. 16.
    Standard E673, Annual Book of the ASTM Standards, American Society for Testing and Materials, West Conshohocken, PA, vol. 3.06 (1998)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Emanouil I. Atanassov
    • 1
  • Mariya K. Durchova
    • 1
  1. 1.Institute for Parallel ProcessingBulgarian Academy of SciencesSofiaBulgaria

Personalised recommendations