Advertisement

One-Dimensional Patch-Recovery Finite Element Method for Fourth-Order Elliptic Problems

  • Andrey B. Andreev
  • Ivan Todor Dimov
  • Milena R. Racheva
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3401)

Abstract

Interpolated one-dimensional finite elements are constructed and applied to the fourth-order self-adjoint elliptic boundary-value problems. A superconvergence postprocessing approach, based on the patch-recovery method, is presented. It is proved that the rate of convergence depends on the different variational forms related to the variety of the corresponding elliptic operators. Finally, numerical results are presented.

Keywords

finite elements eigenvalue problem superconvergence postprocessing 

2000 Subject Classification

65N30 65N25 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ainsworth, M., Oden, J.T.: A Posteriori Error Estimation in Finite Element Analysis. Wiley Interscience, New York (2000)zbMATHGoogle Scholar
  2. 2.
    Brandt, J., Kr̆iz̆ek, M.: History and Future of Superconvergence in Three-Dimensional Finite Element Methods. Preprint N1155, Utrecht University (2001)Google Scholar
  3. 3.
    Lin, Q., Yan, N., Zhou, A.: A rectangular test for interpolated finite elements. In: Proceedings of Systems Science & Systems Engineering, pp. 217–229. Culture Publish Co. (1991)Google Scholar
  4. 4.
    Zienkiewicz, O.C., Zhu, J.Z.: The superconvergence patch recovery and a posteriori error estimates. Part 1: The recovery technique. Int. J. Numer. Methods Engrg. 33, 1331–1364 (1992)zbMATHMathSciNetGoogle Scholar
  5. 5.
    Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1978)zbMATHGoogle Scholar
  6. 6.
    Collatz, L.: Eigenwertaufgaben mit Technischen Anwendungen. Acad. Verlag, Leipzig (1963)Google Scholar
  7. 7.
    Racheva, M.R., Andreev, A.B.: Variational aspects of one-dimensional fourth-order problems with eigenvalue parameter in the boundary conditions. Sib. JNM 4(5), 373–380 (2002)Google Scholar
  8. 8.
    Wahlbin, L.B.: Superconvergence in Galerkin FEM. Springer, Berlin (1995)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Andrey B. Andreev
    • 1
    • 2
  • Ivan Todor Dimov
    • 2
  • Milena R. Racheva
    • 1
  1. 1.Technical University of Gabrovo 
  2. 2.IPP – Bulgarian Academy of Sciencies 

Personalised recommendations