Advertisement

Supercloseness Between the Elliptic Projection and the Approximate Eigenfunction and Its Application to a Postprocessing of Finite Element Eigenvalue Problems

  • Andrey B. Andreev
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3401)

Abstract

An estimate confirming the supercloseness between the Ritz projection and the corresponding eigenvectors, obtained by finite element method, is hereby proved. This result is true for a large class of self-adjoint 2m–order elliptic operators. An application of this theorem to the superconvergence postprocessing patch-recovery technique for finite element eigenvalue problems is also presented. Finally, the theoretical investigations are supported by numerical experiments.

Keywords

finite elements eigenvalue problem superconvergence postprocessing 

2000 Subject Classification

65N30 65N25 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1978)zbMATHGoogle Scholar
  2. 2.
    Babuska, I., Osborn, J.: Eigenvalue Problems. Handbook of Numer. Anal., vol. II. North-Holland, Amsterdam (1991)Google Scholar
  3. 3.
    Pierce, J.G., VCarga, R.S.: Higher order convergence result for the Rayleigh-Ritz method applied to eigenvalue problems: Improved error bounds for eigenfunctions. Numer. Math. 19, 155–169 (1972)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Strang, G., Fix, G.J.: An Analysis of the Finite Element Method. Prentice-Hall, Englewood Cliffs (1973)zbMATHGoogle Scholar
  5. 5.
    Wahlbin, L.B.: Superconvergence in Galerkin FEM. Springer, Berlin (1995)Google Scholar
  6. 6.
    Lin, Q., Yan, N., Zhou, A.: A rectangular test for interpolated finite elements. In: Proceedings of Systems Science & Systems Engineering, pp. 217–229. Culture Publish Co. (1991)Google Scholar
  7. 7.
    Andreev, A.B.: Superconvergence of the gradient of finite element eigenfunctions. C.R. Acad. Bulg. Sci. 43, 9–11 (1990)zbMATHGoogle Scholar
  8. 8.
    Thomee, V.: Galerkin Finite Element Methods for Parabolic Problems. Springer, Heidelberg (1997)zbMATHGoogle Scholar
  9. 9.
    Zienkiewicz, O.C., Zhu, J.Z.: The superconvergence patch recovery and a posteriori error estimates. Part 1: The recovery technique. Int. J. Numer. Methods Engrg. 33, 1331–1364 (1992)zbMATHMathSciNetGoogle Scholar
  10. 10.
    Ainsworth, M., Oden, J.T.: A Posteriori Error Estimation in Finite Element Analysis. Wiley Interscience, New York (2000)zbMATHGoogle Scholar
  11. 11.
    Zhang, Z., Liu, R.: Ultraconcergence of ZZ patch recovery at mesh symmetry points. Numer. Math. 95, 781–801 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Andreev, A.B., Dimov, T.T., Racheva, M.R.: One-dimensional patch-recovery finite element method for fourth-order elliptic problems (in this issue)Google Scholar
  13. 13.
    Racheva, M.R., Andreev, A.B.: Variational aspects of one-dimensional fourth-order problems with eigenvalue parameter in the boundary conditions. Sib. J.N.M. 4(5), 373–380 (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Andrey B. Andreev
    • 1
  1. 1.Technical University of Gabrovo & IPP – Bulgarian Academy of Sciencies 

Personalised recommendations