Advertisement

Implementing Semiring-Based Constraints Using Mozart

  • Alberto Delgado
  • Carlos Alberto Olarte
  • Jorge Andrés Pérez
  • Camilo Rueda
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3389)

Abstract

Although Constraint Programming (CP) is considered a useful tool for tackling combinatorial problems, its lack of flexibility when dealing with uncertainties and preferences is still a matter for research. Several formal frameworks for soft constraints have been proposed within the CP community: all of them seem to be theoretically solid, but few practical implementations exist. In this paper we present an implementation for Mozart of one of these frameworks, which is based on a semiring structure. We explain how the soft constraints constructs were adapted to the propagation process that Mozart performs, and show how they can be transparently integrated with current Mozart hard propagators. Additionally, we show how over-constrained problems can be successfully relaxed and solved, and how preferences can be added to a problem, while keeping the formal model as a direct reference.

Keywords

Precedence Constraint Constraint Satisfaction Problem Soft Constraint Hard Constraint Softness Degree 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Apt, K.R.: The rough guide to constraint propagation. In: Jaffar, J. (ed.) CP 1999. LNCS, vol. 1713, pp. 1–23. Springer, Heidelberg (1999)Google Scholar
  2. 2.
    Bistarelli, S. (ed.): Semirings for Soft Constraint Solving and Programming. LNCS, vol. 2962. Springer, Heidelberg (2004)Google Scholar
  3. 3.
    Bistarelli, S., Codognet, P., Georget, Y., Rossi, F.: Labeling and partial local consistency for soft constraint programming. In: Pontelli, E., Santos Costa, V. (eds.) PADL 2000. LNCS, vol. 1753, p. 230. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  4. 4.
    Bistarelli, S., Codognet, P., Rossi, F.: Abstracting soft constraints: framework, properties, examples. Artif. Intell. 139(2) (2002)Google Scholar
  5. 5.
    Bistarelli, S., Frühwirth, T., Marte, M., Rossi, F.: Soft constraint propagation and solving in constraint handling rules. In: Proc. of the Third Workshop on Rule-Based Constraint Reasoning and Programming (2001)Google Scholar
  6. 6.
    Bistarelli, S., Gennari, R., Rossi, F.: Constraint propagation for soft constraints: Generalization and termination conditions. In: Dechter, R. (ed.) CP 2000. LNCS, vol. 1894, pp. 83–97. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  7. 7.
    Bistarelli, S., Montanari, U., Rossi, F.: Soft concurrent constraint programming. In: Le Métayer, D. (ed.) ESOP 2002. LNCS, vol. 2305, pp. 53–67. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  8. 8.
    Boutilier, C., Brafman, R.I., Hoos, H.H., Poole, D.: Reasoning with ceteris paribus preference statements. In: Proc. 15th Conf. on Uncertainty in AI, pp. 71–80 (1999)Google Scholar
  9. 9.
    Georget, Y., Codognet, P.: Compiling semiring-based constraints with clp(fd,s). In: Maher, M.J., Puget, J.-F. (eds.) CP 1998. LNCS, vol. 1520, p. 205. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  10. 10.
    Kelleher, J., O’Sullivan, B.: Evaluation-based semiring meta-constraints. In: Monroy, R., Arroyo-Figueroa, G., Sucar, L.E., Sossa, H. (eds.) MICAI 2004. LNCS (LNAI), vol. 2972, pp. 179–189. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  11. 11.
    Muller, T.: The Mozart Constraint Extensions Reference (April 2004) Available electronically at, www.mozart-oz.org
  12. 12.
    Pilan, I., Rossi, F.: Abstracting soft constraints: some experimental results. In: Proc. ERCIM/Colognet workshop on CLP and constraint solving (June 2003)Google Scholar
  13. 13.
    Rossi, F., Venable, K.B., Walsh, T.: Cp-networks: semantics, complexity, approximations and extensionsGoogle Scholar
  14. 14.
    Schulte, C., Smolka, G.: Finite Domain Constraint Programming in Oz - A Tutorial (April 2004) Available electronically at, www.mozart-oz.org

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Alberto Delgado
    • 1
  • Carlos Alberto Olarte
    • 1
  • Jorge Andrés Pérez
    • 1
  • Camilo Rueda
    • 1
  1. 1.Pontificia Universidad JaverianaCali

Personalised recommendations