Skip to main content

Universal Families of Reversible P Systems

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3354))

Abstract

Conservative logic is a mathematical model of computation that reflects some properties of microdynamical laws of physics, such as reversibility and the conservation of the internal energy of the physical system used to perform the computations. The model is based upon the Fredkin gate, a reversible and conservative three–input/three–output boolean gate which is functionally complete for boolean logic. Computations are performed by reversible circuits composed by Fredkin gates.

In this paper we introduce energy–based P systems as a parallel and distributed model of computation in which the amount of energy manipulated and/or consumed during computations is taken into account. Moreover, we show how energy–based P systems can be used to simulate reversible Fredkin circuits. The simulating systems turn out to be themselves reversible and conservative.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alford, G.: Membrane systems with heat control. In: Pre-Proceedings of the Workshop on Membrane Computing, Curtea de Arges, Romania (August 2002)

    Google Scholar 

  2. Bekenstein, J.D.: Energy Cost of Information Transfer. Physical Review Letters 46(10), 623–626 (1981)

    Article  MathSciNet  Google Scholar 

  3. Bennett, C.H.: Logical reversibility of computation. IBM Journal of Research and Development 17, 525–532 (1973)

    Article  MATH  Google Scholar 

  4. Cattaneo, G., Leporati, A., Leporini, R.: Fredkin Gates for Finite-valued Reversible and Conservative Logics. Journal of Physics A: Mathematical and General 35, 9755–9785 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  5. Ceterchi, R., Sburlan, D.: Simulating Boolean Circuits with P Systems. In: Martín-Vide, C., Mauri, G., Păun, G., Rozenberg, G., Salomaa, A. (eds.) WMC 2003. LNCS, vol. 2933, pp. 104–122. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  6. Erk, K.: Simulating Boolean Circuits by Finite Splicing. In: Proceedings of the Congress on Evolutionary Computation, vol. 2(6-9), pp. 1279–1285. IEEE Press, Los Alamitos (1999)

    Google Scholar 

  7. Fredkin, E., Toffoli, T.: Conservative Logic. International Journal of Theoretical Physics 21(3-4), 219–253 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  8. Freund, R.: Energy-Controlled P Systems. In: Păun, G., Rozenberg, G., Salomaa, A., Zandron, C. (eds.) WMC 2002. LNCS, vol. 2597, pp. 247–260. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  9. Frisco, P.: The conformon-P system: a molecular and cell biology inspired computability model. Theoretical Computer Science 312, 295–319 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  10. Klein, J.P., Leete, T.H., Rubin, H.: A biomolecular implementation of logically reversible computation with minimal energy dissipation. Biosystems 52, 15–23 (1999)

    Article  Google Scholar 

  11. Landauer, R.: Irreversibility and heat generation in the computing process. IBM Journal of Research and Development 5, 183–191 (1961)

    Article  MATH  MathSciNet  Google Scholar 

  12. Landauer, R.: Uncertainty principle and minimal energy dissipation in the computer. International Journal of Theoretical Physics 21(3-4), 283–297 (1982)

    Article  MATH  Google Scholar 

  13. Ogihara, M., Ray, A.: Simulating Boolean Circuits on a DNA Computer. Tech. Report 631 (1996), Available at: http://citeseer.nj.nec.com/ogihara96simulating.html

  14. Pǎun, G.: Computing with membranes. Journal of Computer and System Sciences 1(61), 108–143 (2000) See also Turku Centre for Computer Science-TUCS Report No. 208 (1998)

    Google Scholar 

  15. Pǎun, G.: Membrane Computing. An Introduction. Springer, Berlin (2002)

    Google Scholar 

  16. Pǎun, G., Suzuki, Y., Tanaka, H.: P Systems with energy accounting. International Journal Computer Math. 78(3), 343–364 (2001)

    Article  Google Scholar 

  17. Petri, C.A.: Gründsatzliches zur Beschreibung diskreter Prozesse. In: Proceedings of the 3 rd Colloquium über Automatentheorie Hannover, (1965), Birkh auser Verlag, Basel, 1967, pp. 121-140. English translation: Fundamentals of the Representation of Discrete Processes, ISF Report 82.04 (1982)

    Google Scholar 

  18. The P systems Web page: http://psystems.disco.unimib.it/

  19. Vollmer, H.: Introduction to Circuit Complexity: A Uniform Approach. Springer, Heidelberg (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Leporati, A., Zandron, C., Mauri, G. (2005). Universal Families of Reversible P Systems. In: Margenstern, M. (eds) Machines, Computations, and Universality. MCU 2004. Lecture Notes in Computer Science, vol 3354. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-31834-7_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-31834-7_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-25261-0

  • Online ISBN: 978-3-540-31834-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics