Skip to main content

Abstract Geometrical Computation for Black Hole Computation

(Extended Abstract)

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3354))

Abstract

The Black hole model of computation provides super-Turing computing power since it offers the possibility to decide in finite (observer’s) time any recursively enumerable (\(\mathcal{R.E.}\)) problem. In this paper, we provide a geometric model of computation, conservative abstract geometrical computation, that, although being based on rational numbers, has the same property: it can simulate any Turing machine and can decide any \(\mathcal{R.E.}\) problem through the creation of an accumulation. Finitely many signals can leave any accumulation, and it can be known whether anything leaves. This corresponds to a black hole effect.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adamatzky, A. (ed.): Collision based computing. Springer, Heidelberg (2002)

    MATH  Google Scholar 

  2. Asarin, E., Maler, O.: Achilles and the Tortoise climbing up the arithmetical hierarchy. In: Thiagarajan, P.S. (ed.) FSTTCS 1995. LNCS, vol. 1026, pp. 471–483. Springer, Heidelberg (1995)

    Google Scholar 

  3. Boccara, N., Nasser, J., Roger, M.: Particle-like structures and interactions in spatio-temporal patterns generated by one-dimensional deterministic cellular automaton rules. Phys. Rev. A 44(2), 866–875 (1991)

    Article  Google Scholar 

  4. Bournez, O.: Achilles and the Tortoise climbing up the hyper-arithmetical hierarchy. Theoret. Comp. Sci. 210(1), 21–71 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  5. Durand-Lose, J.: Intrinsic universality of a 1-dimensional reversible cellular automaton. In: Reischuk, R., Morvan, M. (eds.) STACS 1997. LNCS, vol. 1200, pp. 439–450. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  6. Durand-Lose, J.: Calculer géométriquement sur le plan -machines á signaux. In: Habilitation à diriger des recherches, École Doctorale STIC, Université de Nice-Sophia, Antipolis (2003) (in French)

    Google Scholar 

  7. Durand-Lose, J.: Abstract geometrical computation: Turing-computing ability and unpredictable accumulations (extended abstract). Technical Report 2004-2009, LIP, ÉNS Lyon, 46 allée d’Italie, 69 364 Lyon 7 (2004)

    Google Scholar 

  8. Delorme, M., Mazoyer, J.: Signals on cellular automata. In: [Ada02], pp. 234–275 (2002)

    Google Scholar 

  9. Etesi, G., Nemeti, I.: Non-Turing computations via Malament-Hogarth space-times. Int. J. Theor. Phys. 41(2), 341–370 (2002) gr-qc/0104023

    Article  MATH  MathSciNet  Google Scholar 

  10. Fischer, P.C.: Generation of primes by a one-dimensional real-time iterative array. J. ACM 12(3), 388–394 (1965)

    Article  MATH  Google Scholar 

  11. Hamkins, J.D.: Infinite time Turing machines: Supertask computation. Minds and Machines 12(4), 521–539 (2002) math.LO/0212047

    Article  MATH  Google Scholar 

  12. Hogarth, M.: Non-Turing computers and non-Turing computability. Biennial Meeting of the Philosophy of Science Association 1, 126–138 (1994)

    Google Scholar 

  13. Hogarth, M.: Predictability, computability and space-time. PhD thesis, University of Cambridge, UK (2000), ftp://ftp.math-inst.hu/pub/algebraiclogic/Hogarththesis.ps.gz

  14. Hordijk, W., Shalizi, C.R., Crutchfield, J.P.: An upper bound on the products of particle interactions in cellular automata. Phys. D 154, 240–258 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  15. Ilachinski, A.: Cellular Automata –A Discrete Universe. World Scientific, Singapore (2001)

    MATH  Google Scholar 

  16. Jacopini, G., Sontacchi, G.: Reversible parallel computation: an evolving space-model. Theoret. Comp. Sci. 73(1), 1–46 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  17. Mazoyer, J.: On optimal solutions to the Firing squad synchronization problem. Theoret. Comp. Sci. 168(2), 367–404 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  18. Minsky, M.: Finite and Infinite Machines. Prentice-Hall, Englewood Cliffs (1967)

    MATH  Google Scholar 

  19. Mazoyer, J., Terrier, V.: Signals in one-dimensional cellular automata. Theoret. Comp. Sci. 217(1), 53–80 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  20. Varshavsky, V.I., Marakhovsky, V.B., Peschansky, V.A.: Synchronization of interacting automata. Math. System Theory 4(3), 212–230 (1970)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Durand-Lose, J. (2005). Abstract Geometrical Computation for Black Hole Computation. In: Margenstern, M. (eds) Machines, Computations, and Universality. MCU 2004. Lecture Notes in Computer Science, vol 3354. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-31834-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-31834-7_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-25261-0

  • Online ISBN: 978-3-540-31834-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics