Skip to main content

Submodular Integer Cover and Its Application to Production Planning

  • Conference paper
Approximation and Online Algorithms (WAOA 2004)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3351))

Included in the following conference series:

Abstract

Suppose there are a set of suppliers i and a set of consumers j with demands b j , and the amount of products that can be shipped from i to j is at most c ij . The amount of products that a supplier i can produce is an integer multiple of its capacity κ i , and every production of κ i products incurs the cost of w i . The capacitated supply-demand (CSD) problem is to minimize the production cost of ∑ i w i x i such that all the demands (or the total demand requirement specified separately) at consumers are satisfied by shipping products from the suppliers to them.

To capture the core structural properties of CSD in a general framework, we introduce the submodular integer cover (SIC) problem, which extends the submodular set cover (SSC) problem by generalizing submodular constraints on subsets to those on integer vectors. Whereas it can be shown that CSD is approximable within a factor of O(log(max i ,κ i )) by extending the greedy approach for SSC to CSD, we first generalize the primal-dual approach for SSC to SIC and evaluate its performance. One of the approximation ratios obtained for CSD from such an approach is the maximum number of suppliers that can ship to a single consumer; therefore, the approximability of CSD can be ensured to depend only on the network (incidence) structure and not on any numerical values of input capacities κ i ,b j ,c ij .

The CSD problem also serves as a unifying framework for various types of covering problems, and any approximation bound for CSD holds for set cover generalized simultaneously into various directions. It will be seen, nevertheless, that our bound matches (or nearly matches) the best result for each generalization individually. Meanwhile, this bound being nearly tight for standard set cover, any further improvement, even if possible, is doomed to be a marginal one.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bar-Yehuda, R.: Using homogeneous weights for approximating the partial cover problem. In: Proc. 10th SODA, pp. 71–75. ACM-SIAM (1999)

    Google Scholar 

  2. Bar-Yehuda, R., Even, S.: A linear time approximation algorithm for the weighted vertex cover problem. J. Algorithms 2, 198–203 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bshouty, N.H., Burroughs, L.: Massaging a linear programming solution to give a 2-approximation for a generalization of the vertex cover problem. In: Meinel, C., Morvan, M. (eds.) STACS 1998. LNCS, vol. 1373, pp. 298–308. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  4. Carr, R.D., Fleischer, L.K., Leung, V.J., Phillips, C.A.: Strengthening integrality gaps for capacitated network design and covering problems. In: Proc. 11th SODA, pp. 106–115. ACM-SIAM (2000)

    Google Scholar 

  5. Chuzhoy, J., Naor, J.: Covering problems with hard capacities. In: Proc. 43rd FOCS, pp. 481–489. IEEE, Los Alamitos (2002)

    Google Scholar 

  6. Chvátal, V.: A greedy heuristic for the set-covering problem. Math. Oper. Res. 4(3), 233–235 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  7. Dinur, I., Guruswami, V., Khot, S., Regev, O.: A new multilayered PCP and the hardness of hypergraph vertex cover. In: Proc. 35th STOC, pp. 595–601. ACM, New York (2003)

    Google Scholar 

  8. Dobson, G.: Worst-case analysis of greedy heuristics for integer programming with nonnegative data. Math. Oper. Res. 7(4), 515–531 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  9. Feige, U.: A threshold of ln n for approximating set cover. In: Proc. 28th STOC, pp. 314–318. ACM, New York (1996)

    Google Scholar 

  10. Fujito, T.: A unified local ratio approximation of node-deletion problems. In: Díaz, J. (ed.) ESA 1996. LNCS, vol. 1136, pp. 167–178. Springer, Heidelberg (1996)

    Google Scholar 

  11. Fujito, T.: On approximation of the submodular set cover problem. Oper. Res. Lett. 25, 169–174 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  12. Gale, D., Politof, T.: Substitutes and complements in network flow problems. Discrete Appl. Math. 3, 175–186 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  13. Gandhi, R., Khuller, S., Srinivasan, A.: Approximation algorithms for partial covering problems. In: Orejas, F., Spirakis, P.G., van Leeuwen, J. (eds.) ICALP 2001. LNCS, vol. 2076, pp. 225–236. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  14. Goemans, M.X., Williamson, D.P.: The primal-dual method for approximation algorithms and its application to network design problems. In: Hochbaum, D. (ed.) Approximation Algorithm for NP-Hard Problems, PWS, Boston, pp. 144–191 (1996)

    Google Scholar 

  15. Goldberg, A.V., Tarjan, R.E.: A new approach to the maximum-flow problem. J. ACM 35, 921–940 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  16. Guha, S., Hassin, R., Khuller, S., Or, E.: Capacitated vertex covering with applications. In: Proc. 13th SODA, pp. 858–865. ACM-SIAM (2002)

    Google Scholar 

  17. Hall, N.G., Hochbaum, D.S.: A fast approximation algorithm for the multicovering problem. Discrete Appl. Math. 15, 35–40 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  18. Halperin, E.: Improved approximation algorithms for the vertex cover problem in graphs and hypergraphs. In: Proc. 11th SODA, pp. 329–337. ACM-SIAM (2000)

    Google Scholar 

  19. Halperin, E., Srinivasan, A.: Improved approximation algorithms for the partial vertex cover problem. In: Jansen, K., Leonardi, S., Vazirani, V.V. (eds.) APPROX 2002. LNCS, vol. 2462, pp. 161–174. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  20. Hochbaum, D.S.: Approximation algorithms for the set covering and vertex cover problems. SIAM J. Comput. 11(3), 555–556 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  21. Hochbaum, D.S.: The t-vertex cover problem: Extending the half integrality framework with budget constraints. In: Jansen, K., Rolim, J.D.P. (eds.) APPROX 1998. LNCS, vol. 1444, pp. 111–122. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  22. Johnson, D.S.: Approximation algorithms for combinatorial problems. J. Comput. System Sci. 9, 256–278 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  23. Kolliopoulos, S.G., Young, N.E.: Tight approximation results for general covering integer programs. In: Proc. 42nd FOCS, pp. 522–528. IEEE, Los Alamitos (2001)

    Google Scholar 

  24. Lovász, L.: On the ratio of optimal integral and fractional covers. Discrete Math. 13, 383–390 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  25. Peleg, D., Schechtman, G., Wool, A.: Randomized approximation of bounded multicovering problems. Algorithmica 18, 44–66 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  26. Slavík, P.: Improved performance of the greedy algorithm for partial cover. Inform. Process. Lett. 64(5), 251–254 (1997)

    Article  MathSciNet  Google Scholar 

  27. Topkis, D.M.: Minimizing a submodular function on a lattice. Operations Res. 26(2), 305–321 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  28. Vazirani, V.: Approximation Algorithms. Springer, Berlin (2001)

    Google Scholar 

  29. Wolsey, L.A.: An analysis of the greedy algorithm for the submodular set covering problem. Combinatorica 2(4), 385–393 (1982)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fujito, T., Yabuta, T. (2005). Submodular Integer Cover and Its Application to Production Planning. In: Persiano, G., Solis-Oba, R. (eds) Approximation and Online Algorithms. WAOA 2004. Lecture Notes in Computer Science, vol 3351. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-31833-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-31833-0_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-24574-2

  • Online ISBN: 978-3-540-31833-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics