Skip to main content

Comparing Pitch Spelling Algorithms on a Large Corpus of Tonal Music

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 3310))

Abstract

This paper focuses on the problem of constructing a reliable pitch spelling algorithm—that is, an algorithm that computes the correct pitch names (e.g., C\(\sharp\)4, B\(\flat\)5 etc.) of the notes in a passage of tonal music, when given only the onset-time, MIDI note number and possibly the duration of each note. The author’s ps13 algorithm and the pitch spelling algorithms of Cambouropoulos, Temperley and Longuet-Higgins were run on a corpus of tonal music containing 1.73 million notes. ps13 spelt significantly more of the notes in this corpus correctly than the other algorithms (99.33% correct). However, Temperley’s algorithm spelt significantly more intervals between consecutive notes correctly than the other algorithms (99.45% correct). All the algorithms performed less well on classical music than baroque music. However, ps13 performed more consistently across the various composers and styles than the other algorithms.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Davy, M., Godsill, S.J.: Bayesian harmonic models for musical signal analysis (with discussion). In: Bernardo, J.M., Berger, J.O., Dawid, A.P., Smith, A.F.M. (eds.) Bayesian Statistics, vol. VII, Oxford University Press, Oxford, Draft available online at http://www-sigproc.eng.cam.ac.uk/~sjg/papers/02/harmonicfinal2.ps

  2. Walmsley, P.J.: Signal Separation of Musical Instruments. PhD thesis, Signal Processing Group, Department of Engineering, University of Cambridge (2000)

    Google Scholar 

  3. Plumbley, M., Abdallah, S., Bello, J., Davies, M.E., Monti, G., Sandler, M.: Automatic music transcription and audio source separation. Cybernetics and Systems 33, 603–627 (2002)

    Article  Google Scholar 

  4. Meredith, D., Lemström, K., Wiggins, G.A.: Algorithms for discovering repeated patterns in multidimensional representations of polyphonic music. Journal of New Music Research 31, 321–345 (2002), Draft available online at http://www.titanmusic.com/papers/public/siajnmrsubmit2.pdf

    Google Scholar 

  5. Piston, W.: Harmony. Victor Gollancz Ltd, London (1978), Revised and expanded by Mark DeVoto

    Google Scholar 

  6. Cambouropoulos, E.: A general pitch interval representation: Theory and applications. Journal of New Music Research 25, 231–251 (1996)

    Article  Google Scholar 

  7. Cambouropoulos, E.: Towards a General Computational Theory of Musical Structure. PhD thesis, University of Edinburgh (1998), Available online at http://users.auth.gr/~emilios/englishpage/phd.html

  8. Cambouropoulos, E.: Automatic pitch spelling: From numbers to sharps and flats. In: VIII Brazilian Symposium on Computer Music (SBC&M 2001), Fortaleza, Brazil (2001), Available online at ftp://ftp.ai.univie.ac.at/papers/oefai-tr-2001-12.pdf

  9. Cambouropoulos, E.: Pitch spelling: A computational model. Music Perception 20, 411–429 (2003)

    Article  Google Scholar 

  10. Longuet-Higgins, H.C.: The perception of melodies. Nature 263, 646–653 (1976)

    Article  Google Scholar 

  11. Longuet-Higgins, H.C.: The perception of melodies. In: Longuet-Higgins, H.C. (ed.) Mental Processes: Studies in Cognitive Science, pp. 105–129. British Psychological Society/ MIT Press, London (1987)

    Google Scholar 

  12. Longuet-Higgins, H.C.: The perception of melodies. In: Schwanauer, S.M., Levitt, D.A. (eds.) Machine Models of Music, pp. 471–495. MIT Press, Cambridge (1993)

    Google Scholar 

  13. Temperley, D.: An algorithm for harmonic analysis. Music Perception 15, 31–68 (1997)

    Google Scholar 

  14. Temperley, D.: The Cognition of Basic Musical Structures. MIT Press, Cambridge (2001)

    Google Scholar 

  15. Meredith, D.: Pitch spelling algorithms. In: Kopiez, R., Lehmann, A.C., Wolther, I., Wolf, C. (eds.) Proceedings of the Fifth Triennial ESCOM Conference (ESCOM5), Hanover University of Music and Drama, Hanover, Germany, September 8-13, pp. 204–207 (2003), Draft available online at, http://www.titanmusic.com/papers/public/ps13-escom-paper.pdf

  16. Hewlett, W.B.: MuseData: Multipurpose representation. In: Selfridge-Field, E. (ed.) Beyond MIDI: The Handbook of Musical Codes, pp. 402–447. MIT Press, Cambridge (1997)

    Google Scholar 

  17. Regener, E.: Pitch Notation and Equal Temperament: A Formal Study. University of California Press, Berkeley (1973)

    Google Scholar 

  18. Meredith, D.: Method of computing the pitch names of notes in MIDIlike music representations, Patent filing submitted to UK Patent Office on, April 11 (2003). Application number 0308456.3. Draft available online at, http://www.titanmusic.com/papers/public/ps13-patent-1.pdf

  19. Meredith, D.: Method of computing the pitch names of notes in MIDI-like music representations, Patent filing submitted to UK Patent Office on 18, Application number 0406166.9. Priority date 11, Draft available online (March 2004), at http://www.titanmusic.com/papers/public/ps13-patent-2.pdf

  20. Meredith, D.: Method of computing the pitch names of notes in MIDI-like music representations (2004). Patent filing submitted to US Patent Office on April 12. Application number 10/821962. Priority date April 11 (2003). Draft available online at http://www.titanmusic.com/papers/public/us-ps13-patent.pdf.

  21. Associated Board of the Royal Schools of Music: Rudiments and Theory of Music. Associated Board of the Royal Schools of Music, 14 Bedford Square, London, WC1B 3JG (1958)

    Google Scholar 

  22. Krumhansl, C.L.: Cognitive Foundations of Musical Pitch, vol. 17. Oxford University Press, New York (1990)

    Google Scholar 

  23. Krumhansl, C.L., Kessler, E.J.: Tracing the dynamic changes in perceived tonal organisation in a spatial representation of musical keys. Psychological Review 89, 334–368 (1982)

    Article  Google Scholar 

  24. McNemar, Q.: Psychological Statistics, 4th edn. John Wiley and Sons, New York (1969)

    Google Scholar 

  25. Dietterich, T.G.: Approximate statistical tests for comparing supervised classification learning algorithms. Neural Computation 10, 1895–1924 (1998)

    Article  Google Scholar 

  26. Chew, E., Chen, Y.C.: Determining context-defining windows: Pitch spelling using the spiral array. In: Fourth International Conference on Music Information Retrieval, ISMIR 2003, Baltimore, MD (2003), Available online http://www-rcf.usc.edu/~echew/papers/ISMIR4/ecyc-ismir4.pdf

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Meredith, D. (2005). Comparing Pitch Spelling Algorithms on a Large Corpus of Tonal Music. In: Wiil, U.K. (eds) Computer Music Modeling and Retrieval. CMMR 2004. Lecture Notes in Computer Science, vol 3310. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-31807-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-31807-1_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-24458-5

  • Online ISBN: 978-3-540-31807-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics