Advertisement

A Counter-Geometric Distortions Data Hiding Scheme Using Double Channels in Color Images

  • Gang Xue
  • Peizhong Lu
  • Jinlian Wang
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3304)

Abstract

This paper presents a new approach for data hiding with robustness to global geometric distortions. The global geometric distortions can be described by a 6-parameters affine transformation. Our scheme is designed for color images, which is combined with error-correcting code, double-channels steganography, feature point extraction, and triangle warping. Two color spaces of RGB images are considered two independent channels, one for synchronization information, and the other for a large amount of hiding data. The synchronization information consists of the coordinates of triangles’ centers, cyclic redundancy check bits, and parity check bits of convolutional codes. Global geometric distortions can be estimated successfully by least square method and K-means method. Then a large amount of data with low bit-error rate can be decoded by SOVA algorithm of Turbo coding after the geometric adjustment. We also improve the method for feature point extraction. Simulation results show that our scheme is robust to rotation, scaling, translation, cropping, shearing, and so on.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bas, P., Chassery, J.-M., Macq, B.: Geometrically invariant watermarking using feature points. IEEE Trans. Image Processing 11(9), 1014–1028 (2002)CrossRefGoogle Scholar
  2. 2.
    Harris, C., Stephen, M.: A combined corner and edge detector. In: Proc. of the 4th Alvey Vision Conf., pp. 147–151 (1988)Google Scholar
  3. 3.
    Giraudon, G., Deriche, R.: A computational approach for corner and vertex detection. International Journal of Computer Vision 10(2), 101–124 (1993)CrossRefGoogle Scholar
  4. 4.
    Gracias, N., Santos-Victor, J.: Underwater video mosaics as visual navigation maps. Computer Vision and Image Understanding 79(1), 66–91 (2000)CrossRefGoogle Scholar
  5. 5.
    Mitchell, D.P., Netravali, A.N.: Reconstruction filters in computer graphics. Computer Graphics (Proc. of ACM SIGGRAPH 88) 22(4), 221–228 (1988)CrossRefGoogle Scholar
  6. 6.
    de Berg, M., van Kreveld, M., Overmars, M., Schwarzkopf, O.: Computational Geometry: Algorithms and Applications, 2nd edn. Springer, Heidelberg (2000)CrossRefzbMATHGoogle Scholar
  7. 7.
    Du, Z., Zou, Y., Lu, P.: An optimized spatial data hiding scheme combined with convolutional codes and hilbert scan. In: Chen, Y.-C., Chang, L.-W., Hsu, C.-T. (eds.) PCM 2002. LNCS, vol. 2532, pp. 97–104. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  8. 8.
    Clark, G.C., Cain, J.B.: Error-Correction Coding for Digital Communications. Plenum Press, New York (1981)CrossRefzbMATHGoogle Scholar
  9. 9.
    Heegard, C., Wicker, S.B.: Turbo Coding. Kluwer Academic Publishers, Boston (1999)CrossRefzbMATHGoogle Scholar
  10. 10.
    Petitcolas, F.A.P.: StirMark Benchmark 4.0, (2003). Available, http://www.petitcolas.net/fabien/watermarking/stirmark/

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Gang Xue
    • 1
  • Peizhong Lu
    • 1
  • Jinlian Wang
    • 1
  1. 1.Fudan UniversityShanghaiP.R. China

Personalised recommendations