Watermarking Attack: Security of WSS Techniques

  • François Cayre
  • Caroline Fontaine
  • Teddy Furon
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3304)


Most of watermarking techniques are based on Wide Spread Spectrum (WSS). Security of such schemes is studied here in adopting a cryptanalysis point of view. The security is proportional to the difficulty the opponent has to recover the secret parameters, which are, in WSS watermarking scheme, the private carriers. Both theoretical and practical points of view are investigated when several pieces of content are watermarked with the same secret key. The opponent’s difficulty is measured by the amount of data necessary to estimate accurately the private carriers, and also by the complexity of the estimation algorithms. Actually, Blind Source Separation algorithms really help the opponent exploiting the information leakage to disclose the secret carriers. The article ends with experiments comparing blind attacks to these new hacks. The main goal of the article is to warn watermarkers that embedding hidden messages with the same secret key might is a dangerous security flaws.


Independent Component Analysis Image Watermark Security Level Independent Component Analysis Blind Source Separation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Petitcolas, F., Steinebach, M., Raynal, F., Dittmann, J., Fontaine, C., Fates, N.: Public automated web-based evaluation service for watermarking schemes: Stirmark benchmark. In: IS&T/SPIE International Symposium on Electronic Imaging 2001, Security and Watermarking of Multimedia Contents III, vol. 4314, pp. 575–584 (2001)Google Scholar
  2. 2.
    Kalker, T.: Considerations on watermarking seccurity. In: Proc. of the IEEE Multimedia Signal Processing workshop, Cannes, France, pp. 201–206 (2001)Google Scholar
  3. 3.
    Diffie, W., Hellman, M.: New directions in cryptography. IEEE Trans. on information theory 22, 644–654 (1976)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Shannon, C.: Communication theory of secrecy systems. Bell system technical journal 28, 656–715 (1949)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Moulin, P.: The role of information theory in watermarking and its application to image watermarking. Signal Processing 81, 1121–1139 (2001)CrossRefzbMATHGoogle Scholar
  6. 6.
    Cox, I., Miller, M., Bloom, J.: Principles and Practice. Morgan Kaufmann Publisher, San Francisco (2001)Google Scholar
  7. 7.
    Cayre, F., Fontaine, C., Furon, T.: Watermarking security: Theory and Practice. Accepted to IEEE transactions of Signal Processing (2004)Google Scholar
  8. 8.
    González-Serrano, F., Murillo-Fuentes, J.: Independent component analysis applied to image watermarking. In: ICASSP 2001 (2001)Google Scholar
  9. 9.
    Bounkong, S., Toch, B., Saad, D., Lowe, D.: ICA for watermarking digital images. Journal of Machine Learning Research 1, 1–25 (2002)zbMATHGoogle Scholar
  10. 10.
    Du, J., Lee, C.H., Lee, H.K., Suh, Y.: Watermark attack based on blind estimation without priors. In: IWDW 2002. LNCS, Springer, Heidelberg (2002)Google Scholar
  11. 11.
    Doërr, G., Dugelay, J.L.: Danger of low-dimensional watermarking subspaces. In: Proc. ICASSP, Montrea, Canada, vol. 3. IEEE, Los Alamitos (2004)Google Scholar
  12. 12.
    Pateux, S., Guelvouit, G.L.: Practical watermarking scheme based on wide spread spectrum and game theory. Signal Processing: Image Communication 18, 283–296 (2003)Google Scholar
  13. 13.
    Eggers, J., Baüml, R., Tzschoppe, R., Girod, B.: Scalar costa scheme for information embedding. IEEE Trans. on Signal Processing 51, 1003–1019 (2003)Google Scholar
  14. 14.
    Chen, B., Wornell, G.: Quantization index modulation: A class of provably good methods for digital watermarking and information embedding. IEEE Trans. On Information Theory 47, 1423–1443 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Barni, M., Bartolini, F., Furon, T.: A general framework for robust watermarking security. Signal Processing 83, 2069–2084 (2003); Special issue on Security of Data Hiding Technologies (invited paper)Google Scholar
  16. 16.
    Furon, T., Duhamel, P.: An asymmetric watermarking method. IEEE Trans. on Signal Processing 51, 981–995 (2003); Special issue on signal processing for data hiding in digital media & secure content delivery Google Scholar
  17. 17.
    Kerckhoffs, A.: La cryptographie militaire. Journal des sciences militaires 9, 5–38 (1883)Google Scholar
  18. 18.
    Stoica, P., Ng, B.: On the cramer-rao bound under parametric constraints. IEEE Signal Processing Letters 5, 177–179 (1998)CrossRefGoogle Scholar
  19. 19.
    Hyvärinen, A., Oja, E.: Independent component analysis: a tutorial. Neural Networks 13, 411–430 (2000)CrossRefGoogle Scholar
  20. 20.
    Douglas, S.: Blind source separation and independent component analysis: a crossroad of tools and ideas. In: Proceedings of Fourth International Symposium on Independent Component Analysis and Blind Signal Separation, ICA 2003 (2003)Google Scholar
  21. 21.
    Dempster, A., Laird, N., Rubin, D.: Maximum likelihood from incomplete data via the em algorithm. J. Roy. Stat. Soc., 1–38 (1977)Google Scholar
  22. 22.
    Hyvärinen, A.: Fast and robust fixed-point algorithms for independent component analysis. IEEE Transactions on Neural Networks 10, 626–634 (1999)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • François Cayre
    • 1
  • Caroline Fontaine
    • 2
  • Teddy Furon
    • 1
  1. 1.INRIA projet TEMICSFrance
  2. 2.CNRS LIFLUniversité des Sciences et Technologies de LilleFrance

Personalised recommendations