Advertisement

A Generic Membrane Model (Note)

  • Gérard Boudol
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3267)

Abstract

In this note we introduce a generic model for controlling migration in a network of distributed processes. To this end, we equip the membrane of a domain containing processes with some computing power, including in particular some specific primitives to manage the movements of entities from the inside to the outside of a domain, and conversely. We define a π-calculus instance of our model, and illustrate by means of examples its expressive power. We also discuss a possible extension of our migration model to the case of hierarchically organized domains.

Keywords

Mobile Agent Membrane Model Expressive Power Migration Model Tuple Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Amadio, R.: An asynchronous model of locality, failure, and process mobility. In: Garlan, D., Le Métayer, D. (eds.) COORDINATION 1997. LNCS, vol. 1282, Springer, Heidelberg (1997)CrossRefGoogle Scholar
  2. 2.
    Berry, G., Boudol, G.: The chemical abstract machine. Theoretical Comput. Sci. 96, 217–248 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Boudol, G.: Asynchrony and the π-calculus, INRIA Res. Report 1702 (1992)Google Scholar
  4. 4.
    Boudol, G., Castellani, I., Hennessy, M., Kiehn, A.: Observing localities. Theoretical Comput. Sci. 114, 31–61 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Bugliesi, M., Castagna, G., Crafa, S.: Access control for mobile agents: the calculus of Boxed Ambients. ACM TOPLAS 26(1), 57–124 (2004)CrossRefGoogle Scholar
  6. 6.
    Cardelli, L.: A language with distributed scope. Computing Systems 8(1), 27–59 (1995)Google Scholar
  7. 7.
    Cardelli, L., Ghelli, G., Gordon, A.: Mobility types for mobile Ambients. In: Wiedermann, J., Van Emde Boas, P., Nielsen, M. (eds.) ICALP 1999. LNCS, vol. 1644, pp. 230–239. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  8. 8.
    Cardelli, L., Gordon, A.: Mobile Ambients. In: Nivat, M. (ed.) FOSSACS 1998. LNCS, vol. 1378, pp. 140–155. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  9. 9.
    Castellani, I.: Process Algebras with Localities. In: Bergstra, J., Ponse, A., Smolka, S. (eds.) Handbook of Process Algebras, vol. 15, pp. 945–1045. Elsevier, Amsterdam (2001)CrossRefGoogle Scholar
  10. 10.
    De Nicola, R., Ferrari, G., Pugliese, R.: KLAIM: a kernel langage for agents interaction and mobility. IEEE Trans. on Software Engineering 24(5), 315–330 (1998)CrossRefGoogle Scholar
  11. 11.
    Fournet, C., Gonthier, G., Lévy, J.-J., Maranget, L., R´emy, D.: A calculus of mobile agents. In: Sassone, V., Montanari, U. (eds.) CONCUR 1996, vol. 1119, pp. 406–421. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  12. 12.
    Fuggetta, A., Picco, G.P., Vigna, G.: Understanding code mobility. IEEE Trans. on Soft. Eng. 24(5), 342–361 (1998)CrossRefGoogle Scholar
  13. 13.
    Hennessy, M., Rathke, J., Yoshida, N.: SafeDpi: a language for controlling mobile code, Comput. Sci. Tech. Rep. 02, University of Sussex (2003)Google Scholar
  14. 14.
    Hennessy, M., Riely, J.: Resource access control in systems of mobile agents. Information and Computation 173, 82–120 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Honda, K., Tokoro, M.: An object calculus for asynchronous communication. In: America, P. (ed.) ECOOP 1991. LNCS, vol. 512, pp. 133–147. Springer, Heidelberg (1991)CrossRefGoogle Scholar
  16. 16.
    Levi, F., Sangiorgi, D.: Controlling interference in Ambients. In: POPL 2000, pp. 352–364 (2000)Google Scholar
  17. 17.
    Milner, R.: Functions as processes. Math. Struct. in Comp. Science 2, 119–141 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Milner, R.: The polyadic π-calculus: a tutorial, Technical Report ECS-LFCS-91- 180, Edinburgh University (1991); Reprinted in Bauer, F., Brauer, W., Schwichtenberg, H. (eds.): Logic and Algebra of Specification, pp. 203–246. Springer, Heidelberg (1993)Google Scholar
  19. 19.
    Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes. Information and Computation 100, 1–77 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Ravara, A., Matos, A., Vasconcelos, V., Lopes, L.: Lexically scoping distribution: what you see is what you get. In: Foundations of Global Computing Workshop. ENTCS, vol. 85 (2003)Google Scholar
  21. 21.
    Stefani, J.-B.: A calculus of kells. In: Foundations of Global Computing Workshop. Electronic Notes in Comput. Sci, vol. 85 (2003)Google Scholar
  22. 22.
    Schmitt, A., Stefani, J.-B.: The M-calculus: a higher-order distributed process calculus. In: POPL 2003, pp. 50-61 (2003)Google Scholar
  23. 23.
    Sewell, P., Wojciechowski, P.: Nomadic Pict: language and infrastructure design for mobile agents. IEEE Concurrency 8(2), 42–52 (2000)CrossRefGoogle Scholar
  24. 24.
    Vitek, J., Castagna, G.: Seal: a framework for secure mobile computations. In: Bal, H.E., Cardelli, L., Belkhouche, B. (eds.) ICCL-WS 1998. LNCS, vol. 1686, pp. 47–77. Springer, Heidelberg (1999)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Gérard Boudol
    • 1
  1. 1.INRIA Sophia AntipolisSophia AntipolisFrance

Personalised recommendations