Symbolic Equivalences for Open Systems

  • Paolo Baldan
  • Andrea Bracciali
  • Roberto Bruni
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3267)


Behavioural equivalences on open systems are usually defined by comparing system behaviour in all environments. Due to this “universal” quantification over the possible hosting environments, such equivalences are often difficult to check in a direct way. Here, working in the setting of process calculi, we introduce a hierarchy of behavioural equivalences for open systems, building on a previously defined symbolic approach. The hierarchy comprises both branching, bisimulation-based, and non-branching, trace-based, equivalences. Symbolic equivalences are amenable to effective analysis techniques (e.g., the symbolic transition system is finitely branching under mild assumptions), which result to be sound, but often not complete due to redundant information. Two kinds of redundancy, syntactic and semantic, are discussed and and one class of symbolic equivalences is identified that deals satisfactorily with syntactic redundant transitions, which are a primary source of incompleteness.


Operational Semantic Label Transition System Symbolic Transition Symbolic Equivalence Prolog Program 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abadi, M., Fiore, M.P.: Computing symbolic models for verifying cryptographic protocols. In: Proc. 14th IEEE Computer Security Foundations Workshop, pp. 160–173. IEEE Computer Society Press, Los Alamitos (2001)Google Scholar
  2. 2.
    Aceto, L., Fokkink, W.J., Verhoef, C.: Structural operational semantics. In: Handbook of Process Algebra, pp. 197–292. Elsevier Science, Amsterdam (2001)CrossRefGoogle Scholar
  3. 3.
    Allen, R., Garlan, D.: A formal basis for architectural connectors. ACM Transactions on Software Engineering and Methodology 3(6), 213–249 (1997)CrossRefGoogle Scholar
  4. 4.
    Andrade, L.F., Fiadeiro, J.L., Gouveia, L., Koutsoukos, G., Wermelinger, M.: Coordination for orchestration. In: Arbab, F., Talcott, C. (eds.) COORDINATION 2002. LNCS, vol. 2315, pp. 5–13. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  5. 5.
    Baldan, P., Bracciali, A., Bruni, R.: Bisimulation by unification. In: Kirchner, H., Ringeissen, C. (eds.) AMAST 2002. LNCS, vol. 2422, pp. 254–270. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  6. 6.
    Baldan, P., Bracciali, A., Bruni, R.: Symbolic equivalences for open systems. Technical Report TR-03-16, Department of Computer Science, University of Pisa (2003)Google Scholar
  7. 7.
    Boreale, M.: Symbolic trace analysis of cryptographic protocols. In: Orejas, F., Spirakis, P.G., van Leeuwen, J. (eds.) ICALP 2001. LNCS, vol. 2076, pp. 667–681. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  8. 8.
    Caires, L.: A Model for Declarative Programming and Specification with Concurrency and Mobility. PhD thesis, Departamento de Informática, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa (1999)Google Scholar
  9. 9.
    Caires, L., Cardelli, L.: A spatial logic for concurrency. In: Kobayashi, N., Pierce, B.C. (eds.) TACS 2001. LNCS, vol. 2215, pp. 1–37. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  10. 10.
    Caires, L., Cardelli, L.: A spatial logic for concurrency (part II). In: Brim, L., Jančar, P., Křetínský, M., Kucera, A. (eds.) CONCUR 2002. LNCS, vol. 2421, pp. 209–225. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  11. 11.
    Cardelli, L., Gordon, A.D.: Mobile ambients. In: Nivat, M. (ed.) ETAPS 1998 and FOSSACS 1998. LNCS, vol. 1378, pp. 140–155. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  12. 12.
    Cardelli, L., Gordon, A.D.: Anytime, anywhere. modal logics for mobile ambients. In: Proc. POPL 2000, pp. 365–377. ACM, New York (2000)Google Scholar
  13. 13.
    Clarke, E.M., Jha, S., Marrero, W.: Using state space exploration and a natural deduction style message derivation engine to verify security protocols. In: Proc. PROCOMET 1998. Chapmann & Hall, Sydney (1998)Google Scholar
  14. 14.
    Cleaveland, R., Lüttgen, G.: A logical process calculus. ENTCS (2002)Google Scholar
  15. 15.
    Corradini, A., Montanari, U.: An algebraic semantics for structured transition systems and its application to logic programs. Theoret. Comput. Sci. 103, 51–106 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    De Nicola, R., Ferrari, G., Pugliese, R.: KLAIM: a kernel language for agents interaction and mobility. IEEE Transactions on Software Engineering 24(5), 315–330 (1998)CrossRefGoogle Scholar
  17. 17.
    De Simone, R.: Higher level synchronizing devices in MEIJE–SCCS. Theoret. Comput. Sci. 37, 245–267 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Fiadeiro, J.L., Maibaum, T., Martí-Oliet, N., Meseguer, J., Pita, I.: Towards a verification logic for rewriting logic. In: Bert, D., Choppy, C., Mosses, P.D. (eds.) WADT 1999. LNCS, vol. 1827, pp. 438–458. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  19. 19.
    Focardi, R., Gorrieri, R.: Classification of Security Properties (Part I: Information Flow). In: Focardi, R., Gorrieri, R. (eds.) FOSAD 2000. LNCS, vol. 2171, pp. 331–396. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  20. 20.
    Gadducci, F., Montanari, U.: The tile model. In: Proof, Language and Interaction: Essays in Honour of Robin Milner, pp. 133–166. MIT Press, Cambridge (2000)Google Scholar
  21. 21.
    van Glabbeek, R.: A complete axiomatization for branching bisimulation congruence of finite-state behaviours. In: MFCS 1993. LNCS, vol. 711, pp. 473–484. Springer, Heidelberg (1993)Google Scholar
  22. 22.
    Hennessy, M., Lin, H.: Symbolic bisimulations. Theoret. Comput. Sci. 138, 353–389 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Hoare, C.A.R.: A model for communicating sequential processes. In: On the Construction of Programs. Cambridge University Press, Cambridge (1980)Google Scholar
  24. 24.
    Larsen, K.G., Thomsen, B.: A modal process logic. In: Proceedings of LICS, pp. 203–210. IEEE, Los Alamitos (1988)Google Scholar
  25. 25.
    Larsen, K.G., Xinxin, L.: Compositionality through an operational semantics of contexts. In: ICALP 1990. LNCS, vol. 443, pp. 526–539. Springer, Heidelberg (1990)Google Scholar
  26. 26.
    Leifer, J.J., Milner, R.: Deriving bisimulation congruences for reactive systems. In: Palamidessi, C. (ed.) CONCUR 2000. LNCS, vol. 1877, pp. 243–258. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  27. 27.
    Milner, R.: A complete axiomatisation for observational congruence of finite-state behaviours. Information and Computation 81, 227–247 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Miller, D., Nadathur, G.: Higher-order logic programming. In: Handbook of Logics for Artificial Intelligence and Logic Programming, vol. 5, pp. 499–590. Clarendon Press, Oxford (1998)Google Scholar
  29. 29.
    Milner, R., Parrow, J., Walker, J.: A calculus of mobile processes, I and II. Inform. and Comput. 100(1), 1–40, 41–77 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Nunziato, R.: Sviluppo dell’applicazione SEA per la verifica di sistemi aperti. Master Thesis, Department of Computer Science, University of Pisa (2003) (in Italian)Google Scholar
  31. 31.
    Plotkin, G.: A structural approach to operational semantics. Technical Report DAIMI FN-19, Aarhus University, Computer Science Department (1981)Google Scholar
  32. 32.
    Rensink, A.: Bisimilarity of open terms. Inform. and Comput. 156(1-2), 345–385 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Sangiorgi, D.: Expressing Mobility in Process Algebras: First-Order and Higher-Order Paradigms. PhD thesis, LFCS, University of Edinburgh, CST-99-93 (also published as ECS-LFCS-93-266) (1993)Google Scholar
  34. 34.
    Sangiorgi, D.: A theory of bisimulation for the π-calculus. Acta Inform. 33, 69–97 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Sassone, V., Sobocinski, P.: Deriving bisimulation congruences using 2-categories. Nordic Journal of Computing 10 (2002)Google Scholar
  36. 36.
    Sewell, P.: From rewrite rules to bisimulation congruences. In: Sangiorgi, D., de Simone, R. (eds.) CONCUR 1998. LNCS, vol. 1466, pp. 269–284. Springer, Heidelberg (1998)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Paolo Baldan
    • 1
  • Andrea Bracciali
    • 2
  • Roberto Bruni
    • 2
  1. 1.Dipartimento di InformaticaUniversità Ca’ Foscari di VeneziaItalia
  2. 2.Dipartimento di InformaticaUniversità di PisaItalia

Personalised recommendations