Skip to main content

3 Cosmic Microwave Background Anisotropies

  • Part I The Early Universe According to General Relativity: How Far We Can Go
  • Chapter
  • First Online:
The Physics of the Early Universe

Part of the book series: Lecture Notes in Physics ((LNP,volume 653))

Abstract

The linear anisotropies in the temperature of the cosmic microwave background (CMB) radiation and its polarization provide a clean picture of fluctuations in the universe some 370 kyr after the big bang. Simple physics connects these fluctuations with those present in the ultra-high-energy universe, and this makes the CMB anisotropies a powerful tool for constraining the fundamental physics that was responsible for the generation of structure. Late-time effects also leave their mark, making the CMB temperature and polarization useful probes of dark energy and the astrophysics of reionization. In this review we discuss the simple physics that processes primordial perturbations into the linear temperature and polarization anisotropies. We also describe the role of the CMB in constraining cosmological parameters, and review some of the highlights of the science extracted from recent observations and the implications of this for fundamental physics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • 1. A.A. Penzias, R.W. Wilson, Astrophys. J. 142, 419 (1965).

    Google Scholar 

  • 2. R.H. Dicke et al, Astrophys. J. 142, 414 (1965).

    Google Scholar 

  • 3. R.K. Sachs, A.M. Wolfe, Astrophys. J. 147, 73 (1967).

    Google Scholar 

  • 4. G.F. Smoot et al, Astrophys. J. Lett. 396, 1 (1992).

    Google Scholar 

  • 5. P.J.E. Peebles, Astrophys. J. Lett. 263, 1 (1982).

    Google Scholar 

  • 6. J.R. Bond, G. Efstathiou, Astrophys. J. Lett. 285, 45 (1984).

    Google Scholar 

  • 7. P.J.E. Peebles J.T. Yu, Astrophys. J. 162, 815 (1970).

    Google Scholar 

  • 8. J.C. Mather et al, Astrophys. J. 420, 439 (1994).

    Google Scholar 

  • 9. J.C. Mather et al, Astrophys. J. 512, 511 (1999).

    Google Scholar 

  • 10. J.R. Bond, C.R. Contaldi, D. Pogosyan, Phil. Trans. Roy. Soc. Lond. A 361, 2435 (2003).

    Google Scholar 

  • 11. C.L. Bennett et al, Astrophys. J. Suppl. 148, 1 (2003).

    Google Scholar 

  • 12. D.N. Spergel et al, Astrophys. J. Suppl. 148, 175 (2003).

    Google Scholar 

  • 13. J.M. Kovac et al, Nature 420, 772 (2002).

    Google Scholar 

  • 14. W. Hu, S. Dodelson, Ann. Rev. Astron. Astrophys. 40, 171 (2002).

    Google Scholar 

  • 15. W. Hu, Ann. Phys. 303, 203 (2003).

    Google Scholar 

  • 16. P.J.E. Peebles, Astrophys. J. 153, 1 (1968).

    Google Scholar 

  • 17. Y.B. Zeldovich, V.G. Kurt, R.A. Syunyaev, Journal of Experimental and Theoretical Physics 28, 146 (1969).

    Google Scholar 

  • 18. S. Seager, D.D. Sasselov, D. Scott, Astrophys. J. Suppl. 128, 407 (2000).

    Google Scholar 

  • 19. A. Kogut et al, Astrophys. J. Suppl. 148, 161 (2003).

    Google Scholar 

  • 20. C. Dickinson et al, preprint astro-ph/0402498, (2004).

    Google Scholar 

  • 21. B.S. Mason et al, Astrophys. J. 591, 540 (2003).

    Google Scholar 

  • 22. T.J. Pearson et al, Astrophys. J. 591, 556 (2003).

    Google Scholar 

  • 23. C.L. Kuo et al, Astrophys. J. 600, 32 (2004).

    Google Scholar 

  • 24. C.W. Misner, K.S. Thorne, J.A. Wheeler, Gravitation, (W. H. Freeman and Company, San Francisco 1973) pp 583–590.

    Google Scholar 

  • 25. W. Hu et al, Phys. Rev. D 57, 3290 (1998).

    Google Scholar 

  • 26. A. Challinor, Phys. Rev. D 62, 043004 (2000).

    Google Scholar 

  • 27. G.F.R. Ellis, J. Hwang, M. Bruni, Phys. Rev. D 40, 1819 (1989).

    Google Scholar 

  • 28. A. Challinor, A. Lasenby, Astrophys. J. 513, 1 (1999).

    Google Scholar 

  • 29. A. Challinor, Class. Quantum Grav. 17, 871 (2000).

    Google Scholar 

  • 30. R. Maartens, T. Gebbie, G.F.R. Ellis, Phys. Rev. D 59, 083506 (1999).

    Google Scholar 

  • 31. T. Gebbie, G.F.R. Ellis, Ann. Phys. 282, 285 (2000).

    Google Scholar 

  • 32. T. Gebbie, P.K.S. Dunsby, G.F.R. Ellis, Ann. Phys. 282, 321 (2000).

    Google Scholar 

  • 33. C. Ma, E. Bertschinger, Astrophys. J. 455, 7 (1995)

    Google Scholar 

  • 34. M. Bartelmann, P. Schneider: Phys. Rep. 340, 291 (2001).

    Google Scholar 

  • 35. M.L. Wilson, Astrophys. J. 273, 2 (1983).

    Google Scholar 

  • 36. U. Seljak, M. Zaldarriaga, Astrophys. J. 469, 437 (1996).

    Google Scholar 

  • 37. A. Lewis, A. Challinor, A. Lasenby, Astrophys. J. 538, 473 (2000).

    Google Scholar 

  • 38. N. Kaiser, Mon. Not. R. Astron. Soc. 202, 1169 (1983).

    Google Scholar 

  • 39. W. Hu, N. Sugiyama, Astrophys. J. 444, 489 (1995).

    Google Scholar 

  • 40. W. Hu, N. Sugiyama, Phys. Rev. D 51, 2599 (1995).

    Google Scholar 

  • 41. M. Bucher, K. Moodley, N. Turok, Phys. Rev. D 62, 083508 (2000).

    Google Scholar 

  • 42. L. Page et al, Astrophys. J. Suppl. 148, 233 (2003).

    Google Scholar 

  • 43. C. Gordon, A. Lewis, Phys. Rev. D 67, 123513 (2003).

    Google Scholar 

  • 44. M. Bucher et al, preprint astro-ph/0401417, (2004).

    Google Scholar 

  • 45. J. Silk, Astrophys. J. 151, 459 (1968).

    Google Scholar 

  • 46. J.M. Stewart, Class. Quantum Grav. 7, 1169 (1990).

    Google Scholar 

  • 47. S. Boughn, R. Crittenden, Nature 427, 45 (2004).

    Google Scholar 

  • 48. M.R. Nolta et al, preprint astro-ph/0305097, (2003).

    Google Scholar 

  • 49. P. Fosalba, E. Gaztañaga and F.J. Castander, Astrophys. J. Lett. 597, 89 (2003).

    Google Scholar 

  • 50. R.H. Becker et al, Astron. J. 122, 2850 (2001).

    Google Scholar 

  • 51. S.G. Djorgovski et al, Astrophys. J. Lett. 560, 5 (2001).

    Google Scholar 

  • 52. U. Seljak, M. Zaldarriaga, Phys. Rev. Lett. 78, 2054 (1997).

    Google Scholar 

  • 53. M. Kamionkowski, A. Kosowsky, A. Stebbins, Phys. Rev. Lett. 78, 2058 (1997).

    Google Scholar 

  • 54. J.R. Bond et al, Phys. Rev. Lett. 72, 13 (1994).

    Google Scholar 

  • 55. L.F. Abbott, R.K. Schaefer, Astrophys. J. 308, 546 (1986).

    Google Scholar 

  • 56. G. Efstathiou, J.R. Bond, Mon. Not. R. Astron. Soc. 304, 75 (1999).

    Google Scholar 

  • 57. A.G. Riess et al, Astron. J. 116, 1009 (1998).

    Google Scholar 

  • 58. S. Perlmutter et al, Astrophys. J. 517, 565 (1999).

    Google Scholar 

  • 59. W.L. Freedman et al, Astrophys. J. 553, 47 (2001).

    Google Scholar 

  • 60. A. Lewis, A. Challinor, N. Turok, Phys. Rev. D 65, 023505 (2002).

    Google Scholar 

  • 61. M. Zaldarriaga, Phys. Rev. D 55, 1822 (1997).

    Google Scholar 

  • 62. G. Holder et al, Astrophys. J. 595, 13 (2003).

    Google Scholar 

  • 63. G. Hinshaw et al, Astrophys. J. Suppl. 148, 135 (2003).

    Google Scholar 

  • 64. E. Komatsu et al, Astrophys. J. Suppl. 148, 119 (2003).

    Google Scholar 

  • 65. A. de Oliveria-Costa et al, preprint astro-ph/0307282, (2003).

    Google Scholar 

  • 66. P. Vielva et al, preprint astro-ph/0310273, (2003).

    Google Scholar 

  • 67. C.J. Copi, D. Huterer, G.D. Starkman, preprint astro-ph/0310511, (2003).

    Google Scholar 

  • 68. H.K. Erikse et al, preprint astro-ph/0401276, (2004).

    Google Scholar 

  • 69. F.K. Hansen et al, preprint astro-ph/0402396, 2004.

    Google Scholar 

  • 70. A.C.S. Readhead et al, preprint astro-ph/0402359, (2004).

    Google Scholar 

  • 71. R. Rebolo et al, preprint astro-ph/0402466, (2004).

    Google Scholar 

  • 72. U. Seljak, P. McDonald, A. Makarov, Mon. Not. R. Astron. Soc. 342, L79 (2003).

    Google Scholar 

  • 73. A. Slosar, U. Seljak, A. Makarov, preprint astro-ph/0403073, (2004).

    Google Scholar 

  • 74. S.M. Leach, A.R. Liddle, Mon. Not. R. Astron. Soc. 341, 1151 (2003).

    Google Scholar 

  • 75. M. Tegmark et al, preprint astro-ph/0310723, (2003).

    Google Scholar 

  • 76. R.A. Sunyaev, Y.B. Zeldovich, Comm. Astrophys. Space Phys. 4, 173 (1972).

    Google Scholar 

  • 77. R.A. Sunyaev, Y.B. Zeldovich, Mon. Not. R. Astron. Soc. 190, 413 (1980).

    Google Scholar 

  • 78. J.P. Ostriker, E.T. Vishniac, Astrophys. J. Lett. 306, 51 (1986).

    Google Scholar 

  • 79. A. Blanchard, J. Schneider, Astron. Astrophys. 184, 1 (1987).

    Google Scholar 

  • 80. C.M. Hirata, U. Seljak, Phys. Rev. D 68, 083002 (2003).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

E. Papantonopoulos

Rights and permissions

Reprints and permissions

About this chapter

Cite this chapter

Challinor, A. 3 Cosmic Microwave Background Anisotropies. In: Papantonopoulos, E. (eds) The Physics of the Early Universe. Lecture Notes in Physics, vol 653. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-31535-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-31535-3_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22712-0

  • Online ISBN: 978-3-540-31535-3

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics