Nanostructured Materials:Reaction Kinetics and Stability

  • John H. PerepezkoEmail author
Part of the Lecture Notes in Physics book series (LNP, volume 658)


An important consequence of the expanding study of the nanocrystalline state is the recognition of new behavior that is exposed at the nanometer length scale, but this also requires the recognition of the scaling of conventional behavior. The synthesis pathways further emphasize the importance of reaction kinetics and especially nucleation processes where the nanometer length scale is central to the kinetics. Similarly, the observed phase selection during nanostructure synthesis is often different than that expected from the thermodynamics of bulk phase stability, but can be analyzed in terms of a scaling of the hierarchy of equilibrium and the influence of large characteristic driving free energies. At the same time, the reaction pathways that yield different phase states and microstructures can be described in terms of open or closed system conditions that reflect the manner in which the excess free energy is developed during synthesis. The principles that govern the genesis of nanostructured materials and the key issues concerning the reaction kinetics and stability are illustrated from the observed behavior in specific amorphous alloys, but the treatment also applies in general to materials systems.


Free Energy Amorphous Alloy Nanostructured Material Primary Crystallization Excess Free Energy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1. H. Gleiter: Prog. Mat. Sci. 33, 223 (1989)CrossRefGoogle Scholar
  2. 2. C. C. Koch: Nanostruc. Mater. 2, 109 (1993)CrossRefGoogle Scholar
  3. 3. K. Lu: Mat. Sci. & Engr. Rep. R16, 161 (1996)Google Scholar
  4. 4. G. Martin, P. Bellon: Sol. State Physics 50, 189 (1996)CrossRefGoogle Scholar
  5. 5. G. Martin: Phys. Rev. B30, 1424 (1984)Google Scholar
  6. 6. G. Martin, P. Bellon, P Sisson: Defect Diffusion Forum 143-147, 385 (1997)CrossRefGoogle Scholar
  7. 7. W. L. Johnson: Progress in Materials Science 30, 86 (1981)Google Scholar
  8. 8. D. R. Gaskell: Introduction to the Thermodynamics of Materials, 3rd edn (Taylor & Francis, London 1995)Google Scholar
  9. 9. M. Hillert: Phase Equilibria, Phase Diagrams and Phase Transformations: Their Thermodynamic Basis, (Cambridge University Press, Cambridge UK 1998)Google Scholar
  10. 10. D. A. Porter, K. E. Easterling: Phase Transformations in Metals and Alloys, (Chapman and Hall, New York 1992)Google Scholar
  11. 11. J. H. Perepezko, M. J. Uttörmark: Metall. Mater. Tran. 27A, 533 (1996)CrossRefGoogle Scholar
  12. 12. W. J. Boettinger, J. H. Perepezko: Fundamentals of Solidification at High Rates. In: Rapidly Solidified Alloys: Processes, Structures, Properties, Applications, ed by H. H. Lieberman (Marcel Decker Inc., New York 1993) pp 17–78Google Scholar
  13. 13. J. C. Baker, J. W. Cahn: Solidification, (ASM, Metals Park OH 1971) pp 23Google Scholar
  14. 14. J. H. Perepezko, W. J. Boettinger: In Alloy Phase Diagrams, ed by T. B. Massalski and B. C. Giessen (Elsevier, New York 1983) pp 223Google Scholar
  15. 15. J. H. Perepezko: Mater. Sci. & Engr. A226-228, 374 (1997)Google Scholar
  16. 16. J. H. Perepezko, M. H. da Silva Bassani, J. H. Park, A. S. Edelstein, R. K. Everett: Mat. Sci. & Engr. A195, 1 (1995)Google Scholar
  17. 17. J. H. Perepezko, G. J. Wilde: J. Non-Cryst. Solids 274, 271 (2000)CrossRefGoogle Scholar
  18. 18. W. J. Boettinger: In Rapidly Solidified Amorphous and Crystalline Alloys, ed by B. H. Kear, B. C. Giessen and M. Cohen (North-Holland, Amsterdam 1982) pp 15Google Scholar
  19. 19. T. B. Massalski: In Proc. 4th Int. Conf. In Rapidly Quenched Metals, ed by T. Masumoto and K. Suzuki (The Japan Institute of Metals, Sendai 1982) pp 203Google Scholar
  20. 20. J. M. McHale, J. M. Anroux, A. J. Perrotte, A. Navrotsky: Science 277, 778 (1997)CrossRefGoogle Scholar
  21. 21. R. C. Garrie: J. Phys. Chem. 69, 1238 (1965)CrossRefGoogle Scholar
  22. 22. N. L. Wu, T. F. Wu: J. Mater. Res. 16, 666 (2001)CrossRefGoogle Scholar
  23. 23. H. Zhang, J. F. Banfield: J. Mater. Chem. 8, 2073 (1998)CrossRefGoogle Scholar
  24. 24. J. K. Dewhurst, J. E. Lowther: Phys. Rev. B57, 741 (1998)Google Scholar
  25. 25. J. M. McHale, A. Navrotsky, A. J. Perrotte: J. Phys. Chem B101, 603 (1977)Google Scholar
  26. 26. J. Tersoff: Appl. Phys. Lett. 83, 353 (2003)CrossRefGoogle Scholar
  27. 27. R. S. Williams, G. Medeiros-Ribeiro, T. I. Kamins, D. A. A. Ohlberg: Ann. Rev. Phys. Chem. 51, 527 (2000)CrossRefGoogle Scholar
  28. 28. P. J. Desré: Acta Metall. Mater. 39, 2309 (1991)CrossRefGoogle Scholar
  29. 29. P. J. Desré, R. Yavari: Phys. Rev. Lett. 64, 13 (1990)CrossRefGoogle Scholar
  30. 30. A. M. Gusak: Ukr. Phys. 35, 725 (1990)Google Scholar
  31. 31. A. M. Gusak, A. V. Nasarov: J. Phys. Condens. Matter 4, 4753 (1992)CrossRefGoogle Scholar
  32. 32. J. J. Hoyt, L. N. Brush: J. Appl. Phys. 78, 1559 (1995)CrossRefGoogle Scholar
  33. 33. K. R. Coffey, K. Barmak: Acta Metall. Mater. 42, 2905 (1994)CrossRefGoogle Scholar
  34. 34. J. Philiber: Def. and Diff. Forum 95-98, 493 (1993)CrossRefGoogle Scholar
  35. 35. H. J. Highmore, A. L. Greer, J. A. Leake, J. E. Evetts: Mater. Lett. 6, 401 (1998)CrossRefGoogle Scholar
  36. 36. C. V. Thompson: J. Mater. Res. 7, 367 (1992)CrossRefGoogle Scholar
  37. 37. J. W. Cahn: Acta Metall. 9, 795 (1961)CrossRefGoogle Scholar
  38. 38. J. W. Cahn: AIME 242, 166 (1968)Google Scholar
  39. 39. W. C. Johnson, P. W. Voorhees: J. Stat. Phys. 95, 1281 (1999)CrossRefGoogle Scholar
  40. 40. A. Inoue: Prog. Mat. Sci. 43, 365 (1998)CrossRefGoogle Scholar
  41. 41. D. Turnbull: Metall. Trans. 12A, 695 (1981)CrossRefGoogle Scholar
  42. 42. U. Köster, U. Schünemann: In: Rapidly Solidified Alloys: Processes, Structures, Properties, Applications, ed by H. H. Liebermann (Marcel Decker Inc., New york 1993) pp 303–337Google Scholar
  43. 43. A. L. Greer: Science 267, 1947 (1995)CrossRefGoogle Scholar
  44. 44. A. L. Greer: Metall. Mater. Trans. 27A, 549 (1996)CrossRefGoogle Scholar
  45. 45. J. H. Perepezko, R. J. Hebert: JOM 54, 34 (2002)CrossRefGoogle Scholar
  46. 46. K. Hono: Prog. Mat. Sci. 47, 621 (2002)CrossRefGoogle Scholar
  47. 47. W. D. Kingery, H. K. Bowen, D. R. Uhlmann: Introduction to Ceramics, 2nd Ed. (J. Wiley & Sons, New York 1976)Google Scholar
  48. 48. K. C. Russell: Advances in Colloid and Interface Sciences 13, 205 (1980)CrossRefGoogle Scholar
  49. 49. F. Spaepen: Sol. State. Phys. 47, 1 (1994)CrossRefGoogle Scholar
  50. 50. R. K. Trivedi: Theory of Capillarity. In Lectures on the Theory of Phase Transformations, ed by H. I. Aaronson (TMS, Warrendale PA 1999) pp 135–165Google Scholar
  51. 51. K. Kelton: Sol. State Phys. 45, 75 (1975)CrossRefGoogle Scholar
  52. 52. J. W. Christian: The Theory of Transformations in Metals and Alloys, 2nd edn (Pergamon Press, Oxford UK 1995)Google Scholar
  53. 53. D. Kaschiev: Surf. Science 14, 109 (1969)Google Scholar
  54. 54. D. R. Allen, J. C. Foley and J. H. Perepezko: Acta Mater 46, 431 (1998)CrossRefGoogle Scholar
  55. 55. C. A. Angell: Science 267, 1924 (1995)CrossRefGoogle Scholar
  56. 56. J. C. Foley, D. R. Allen, J. H. Perepezko: Scripta Mat. 35, 655 (1996)CrossRefGoogle Scholar
  57. 57. J. H. Perepezko, R. J. Hebert, W. S. Tong: Intermetallics 10, 1079 (2002)CrossRefGoogle Scholar
  58. 58. J. H. Perepezko, R. J. Hebert, R. I. Wu, G. Wilde: J. Non-Cryst. Sol. 317, 52 (2003)CrossRefGoogle Scholar
  59. 59. A. L. Greer: Acta Metall. 30, 171 (1982)CrossRefGoogle Scholar
  60. 60. H. W. Kui, D. Turnbull: Appl. Phys. Lett. 47, 796 (1985)CrossRefGoogle Scholar
  61. 61. S. Omata, T. Tanaka, T. Ispida, A. Sato, A. Inoue: Phil. Mag. A76, 387 (1997)Google Scholar
  62. 62. A. K. Gangopadhyay, T. K. Croat, K. Kelton: Acta Mater. 48, 4035 (2000)CrossRefGoogle Scholar
  63. 63. J. C. Foley, D. R. Allen, J. H. Perepezko: Mat. Sci. & Engr. A226-228, 569 (1997)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  1. 1.University of Wisconsin-Madison, Department of Materials Science and EngineeringMadisonUSA

Personalised recommendations