Ab Initio Calculations of Clusters

  • Florian Weigend
Part of the Lecture Notes in Physics book series (LNP, volume 658)


Both ab initio quantum chemistry and the investigation of atomic or molecular clusters are fields of active research nowadays. This contribution presents on one hand some advances in making programs efficient for calculations of large systems, on the other it shows some fruitful combinations of calculated and experimental results. Respecting the context of the CFN summer school, it is addressed rather to non-quantum chemists, to give an insight into contemporary quantum chemical possibilities in calculations of clusters as well as to show the strengths and weaknesses of several methods. In the following chapter the very basics of quantum chemistry are discussed (as far as necessary for what follows), next some details of implementation to increase efficiency of HF, DFT and MP2 algorithms are shown. In the last section three different applications of quantum chemical methods for atomic and for molecular clusters are presented. Firstly, as an example for the HF+MP2-method, the determination of the structure and bonding situation in negatively charged clusters of water molecules is discussed, secondly a similar study of anionic gold clusters, but this time by means of density functional theory (DFT) is presented. In both cases, by combining theory and experiment results are obtained which would not have been found by calculations alone or only by experiments. The last application presented here is a DFT study on clusters of magnesium (up to Mg309), focussing on the validity of the simple models of electronic and atomic shells leading to ’magic’ atom and electron numbers.


Density Functional Theory Cohesive Energy Magic Number Gold Cluster Additional Electron 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1. A.D. Becke: J. Chem. Phys. 98, 5648 (1993)CrossRefGoogle Scholar
  2. 2. J.P. Perdew: Phys. Rev. B 33, 8822 (1986)CrossRefGoogle Scholar
  3. 3. O. Vahtras, J. Almlöf, M.W. Ferereisen: Chem. Phys. Lett. 213, 514 (1993)CrossRefGoogle Scholar
  4. 4. K. Eichkorn, O. Treutler, H. Öhm, M. Häser, R. Ahlrichs: Chem. Phys. Lett. 240, 283 (1995)CrossRefGoogle Scholar
  5. 5. K. Eichkorn, F. Weigend, O. Treutler, R. Ahlrichs: Theor. Chem. Acc. 97, 119 (1997)CrossRefGoogle Scholar
  6. 6. F. Weigend, M. Häser: Theor. Chem. Act. 97, 331 (1997)CrossRefGoogle Scholar
  7. 7. F. Weigend, M. Häser, H. Patzelt, R. Ahlrichs: Chem. Phys. Lett. 297, 143 (1998)CrossRefGoogle Scholar
  8. 8. F. Weigend: Phys. Chem. Chem. Phys. 4, 4285 (2002)CrossRefGoogle Scholar
  9. 9. M. Sierka, A. Hogekamp, R. Ahlrichs: J. Chem. Phys. 118, 9163 (2003)CrossRefGoogle Scholar
  10. 10. P. Nava, M. Sierka, R. Ahlrichs: Phys. Chem. Chem. Phys. 5, 4036 (2003)CrossRefGoogle Scholar
  11. 11. O. Treutler, R. Ahlrichs: J. Chem. Phys. 102, 346 (1995)CrossRefGoogle Scholar
  12. 12. M. Häser: J. Chem. Phys. 95, 8259 (1991)CrossRefGoogle Scholar
  13. 13. M. Häser, R. Ahlrichs: J. Comput. Chem. 10, 104 (1989)CrossRefGoogle Scholar
  14. 14. F. Weigend, R. Ahlrichs: Phys. Chem. Chem. Phys. 1, 4537 (1999)CrossRefGoogle Scholar
  15. 15. S. Lee, J. Kim, S.J. Lee, K.S. Kim: Phys. Rev. Lett. 79, 2308 (1997)CrossRefGoogle Scholar
  16. 16. F. Furche, R. Ahlrichs, P. Weis, C. Jakob, S. Gilb, T. Birweiler, M. Kappes: J. Chem. Phys. 117, 6982 (2002)CrossRefGoogle Scholar
  17. 17. A. Köhn, F. Weigend, R. Ahlrichs: Phys. Chem. Chem. Phys. 3, 711 (2001)CrossRefGoogle Scholar
  18. 18. T.P. Martin, T. Bergmann, H. Göhlich, T. Lange: Chem. Phys. Lett. 176, 343 (1991)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Florian Weigend
    • 1
  1. 1.Forschungszentrum Karlsruhe, Institut für Nanotechnologie (INT), Postfach 3640KarlsruheGermany

Personalised recommendations