Advertisement

Solid State Theory Meets Photonics:The Curious Optical Properties of Photonic Crystals

  • Kurt Busch
  • Sergei F. Mingaleev
  • Matthias Schillinger
  • Daniel Hermann
  • Lasha Tkeshelashvili
Chapter
Part of the Lecture Notes in Physics book series (LNP, volume 658)

Abstract

The past decades have seen dramatic advances in microstructuring technology. Today, a wide variety of structures with feature sizes ranging from a couple of micrometers all the way down to a few tens of nanometers are routinely fabricated with precision better than ten nanometers. In addition to these improvements in fabrication quality, the variety of materials that can be processed is growing continuously. These advances in materials science are paralleled by the development of novel and improvement of existing laser sources that allows one to generate electromagnetic fields with previously unattainable energy densities as well as temporal and spatial coherences. Bringing together advanced microfabrication technologies with sophisticated laser systems lies at the heart of Nano-Photonics: The control over the flow of light on length scales of the wavelength of light itself through microstructured optical materials (“photonic metamaterials”) with carefully designed properties.

Keywords

Photonic Crystal Group Velocity Dispersion Bloch Function Wannier Function Plane Wave Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1. E. Yablonovitch: Phys. Rev. Lett. 58, 2059 (1987)CrossRefGoogle Scholar
  2. 2. S. John: Phys. Rev. Lett. 58, 2486 (1987)CrossRefGoogle Scholar
  3. 3. S. John, O. Toader, K. Busch: Encyclopedia of Science and Technology, Vol 12 (Academic Press 2001)Google Scholar
  4. 4. K.-M. Ho, C.T. Chan, C.M. Soukoulis: Phys. Rev. Lett. 65, 3152 (1990)CrossRefGoogle Scholar
  5. 5. N.W. Ashcroft, N.D. Mermin: Solid State Physics (Saunders College Publishing 1976)Google Scholar
  6. 6. K. Busch, S. John: Phys. Rev. E 58, 3896 (1998)CrossRefGoogle Scholar
  7. 7. K. Busch, S. John: Phys. Rev. Lett. 83, 967 (1999)CrossRefGoogle Scholar
  8. 8. D. Hermann, M. Frank, K. Busch, P. Wölfle: Optics Express 8, 167 (2001)CrossRefGoogle Scholar
  9. 9. A. Brandt, S. McCormick, J. Ruge: SIAM J. Sci. Stat. Comput. 4, 244 (1983)CrossRefGoogle Scholar
  10. 10. C. Martijn de Sterke, J.E. Sipe: Phys. Rev. A 38, 5149 (1988)CrossRefGoogle Scholar
  11. 11. J.E. Sipe: Phys. Rev. E 62, 5672 (2000)CrossRefGoogle Scholar
  12. 12. A. Birner, R.B. Wehrspohn, U.M. Gösele, K. Busch: Adv. Mater. 13, 377 (2001)CrossRefGoogle Scholar
  13. 13. T.F. Krauss, R.M. de la Rue: Prog. Quantum Electron. 23, 51 (1999)CrossRefGoogle Scholar
  14. 14. A. Forchel et al.: Microelectron. Eng. 53, 21 (2000)Google Scholar
  15. 15. M. Loncar, T. Doll, J. Vuckovic, A. Scherer: J. Lightwave Technol. 18, 1402 (2000)CrossRefGoogle Scholar
  16. 16. H. Benisty et al.: IEEE J. Quantum Electron. 38, 770 (2002)Google Scholar
  17. 17. S. Noda, M. Imada, A. Chutinan, N. Yamamoto: Opt. Quantum Electron. 34, 723 (2002)CrossRefGoogle Scholar
  18. 18. C. Liguda et al.: Appl. Phys. Lett. 78, 2434 (2001)Google Scholar
  19. 19. A.C. Edrington et al.: Adv. Mater. 13, 421 (2001)Google Scholar
  20. 20. A. Rosenberg, R.J. Tonucci, H.B. Lin, E.L. Shirley: Phys. Rev. B 54, R5195 (1996)Google Scholar
  21. 21. O.J.A. Schueller et al.: Appl. Opt. 38, 5799 (1999)Google Scholar
  22. 22. S.-Y. Lin et al.: Nature 394, 251 (1998)Google Scholar
  23. 23. S. Noda, K. Tomoda, N. Yamamoto, A. Chutinan: Science 289, 604 (2000)CrossRefGoogle Scholar
  24. 24. J.E.G.J. Wijnhoven, W.L. Vos: Science 281, 802 (1998)CrossRefGoogle Scholar
  25. 25. A. Blanco et al.: Nature 405, 437 (2000)Google Scholar
  26. 26. Y.A. Vlasov, X.Z. Bo, J.C. Sturm, D.J. Norris: Nature 414, 289 (2001)CrossRefGoogle Scholar
  27. 27. M. Campbell et al.: Nature 404, 53 (2000)Google Scholar
  28. 28. Y.V. Miklyaev et al.: Appl. Phys. Lett. 82, 1284 (2003)Google Scholar
  29. 29. H.B. Sun, S. Matsuo, H. Misawa: Appl. Phys. Lett. 74, 786 (1999)CrossRefGoogle Scholar
  30. 30. H.B. Sun et al.: Appl. Phys. Lett. 79, 1 (2001)Google Scholar
  31. 31. M. Straub, M. Gu: Opt. Lett. 27, 1824 (2002)CrossRefGoogle Scholar
  32. 32. M. Deubel, G. Von Freymann, M. Wegener, S. Pereira, K. Busch, C.M. Soukoulis: Nature Materials (in press)Google Scholar
  33. 33. N. Aközbek, S. John: Phys. Rev. E 57, 2287 (1998)CrossRefGoogle Scholar
  34. 34. N. Bhat, J. Sipe: Phys. Rev. E 64, 056604 (2001)CrossRefGoogle Scholar
  35. 35. S.F. Mingaleev, Yu.S. Kivshar: Phys. Rev. Lett. 86, 5474 (2001)CrossRefGoogle Scholar
  36. 36. K. Sakoda: Optical properties of Photonic Crystals, (Springer, Berlin, Heidelberg, New York 2001)Google Scholar
  37. 37. K. Sakoda, K. Ohtaka: Phys. Rev. B 54, 5742 (1996)CrossRefGoogle Scholar
  38. 38. A.H. Nayfeh: Perturbation Methods (Wiley, New York 1973)Google Scholar
  39. 39. R.K. Dodd, J.C. Eilbeck, J.D. Gibbon, H.C. Morris: Solitons and Nonlinear Wave Equations (Academic Press, London 1982)Google Scholar
  40. 40. L. Tkeshelashvili, S. Pereira, K. Busch: submitted (2004)Google Scholar
  41. 41. L. Tkeshelashvili: Interaction of Nonlinear Waves in Photonic Crystals. PhD Thesis, University of Karlsruhe (2003)Google Scholar
  42. 42. L. Tkeshelashvili, K. Busch: submitted (2004)Google Scholar
  43. 43. L. Florescu, K. Busch, S. John: J. Opt. Soc. Am. B 19, 2215 (2002)CrossRefGoogle Scholar
  44. 44. S. John, J. Wang: Phys. Rev. B 43, 12772 (1991)CrossRefGoogle Scholar
  45. 45. S. John, T. Quang: Phys. Rev. A 50, 1764 (1994)CrossRefGoogle Scholar
  46. 46. N. Vats, S. John, K. Busch: Phys. Rev. A 65, 043808 (2002)CrossRefGoogle Scholar
  47. 47. N. Vats, S. John: Phys. Rev. A 58, 4168 (1998)CrossRefGoogle Scholar
  48. 48. M. Woldeyohannes, S. John: Phys. Rev. A 60, 5046 (1999)CrossRefGoogle Scholar
  49. 49. K. Busch, S.F. Mingaleev, A. Garcia-Martin, M. Schillinger, D. Hermann: J. Phys.: Condens. Matter 15, R1233 (2003)Google Scholar
  50. 50. N. Marzari, D. Vanderbilt: Phys. Rev. B 56, 12847 (1997)CrossRefGoogle Scholar
  51. 51. A. Garcia-Martin, D. Hermann, K. Busch, P. Wölfle: Mater. Res. Soc. Symp. Proc. 722, L 1.1 (2002)Google Scholar
  52. 52. D.M. Whittaker, M.P. Croucher: Phys. Rev. B 67, 085204 (2003)CrossRefGoogle Scholar
  53. 53. A. Mekis et al.: Phys. Rev. Lett. 77, 3787 (1996)Google Scholar
  54. 54. S.F. Mingaleev, Yu.S. Kivshar: J. Opt. Soc. Am. B 19, 2241 (2002)CrossRefGoogle Scholar
  55. 55. S. Fan et al.: J. Opt. Soc. Am. B 18, 162 (2001)Google Scholar
  56. 56. S.G. Johnson et al.: Opt. Lett. 23, 1855 (1998)Google Scholar
  57. 57. A. Chutinan, S. John, O. Toader: Phys. Rev. Lett. 90, 123901 (2003)CrossRefGoogle Scholar
  58. 58. S. Lan, H. Ishikawa: Opt. Lett. 27, 1567 (2002)CrossRefGoogle Scholar
  59. 59. K. Yoshino et al.: Appl. Phys. Lett. 75, 932 (1999)Google Scholar
  60. 60. G. Mertens et al.: Appl. Phys. Lett. 83, 3036 (2003)Google Scholar
  61. 61. S.W. Leonard et al.: Phys. Rev. B 61, R2389 (2000)Google Scholar
  62. 62. Ch. Schuller et al.: Appl. Phys. Lett. 82, 2767 (2003)Google Scholar
  63. 63. H. Takeda, K. Yoshino: Phys. Rev. B 67, 073106 (2003)CrossRefGoogle Scholar
  64. 64. S. Gottardo, D.S. Wiersma, W.L. Vos: Physica B 338, 143 (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Kurt Busch
    • 1
    • 2
  • Sergei F. Mingaleev
    • 1
    • 3
  • Matthias Schillinger
    • 1
  • Daniel Hermann
    • 1
  • Lasha Tkeshelashvili
    • 1
  1. 1.Institut für Theorie der Kondensierten Materie, Universität KarlsruheKarlsruheGermany
  2. 2.Department of Physics and School of Optics: CREOL & FPCE, University of Central FloridaOrlandoUSA
  3. 3.Bogolyubov Institute for Theoretical PhysicsKievUkraine

Personalised recommendations