Skip to main content

Forces from Connes’ Geometry

  • Chapter
  • First Online:

Part of the book series: Lecture Notes in Physics ((LNP,volume 659))

Abstract

Einstein derived general relativity from Riemannian geometry. Connes extends this derivation to noncommutative geometry and obtains electro–magnetic, weak, and strong forces. These are pseudo forces, that accompany the gravitational force just as in Minkowskian geometry the magnetic force accompanies the electric force. The main physical input of Connes’ derivation is parity violation. His main output is the Higgs boson which breaks the gauge symmetry spontaneously and gives masses to gauge and Higgs bosons.

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • 1. A. Connes, A. Lichnérowicz and M. P. Schützenberger, Triangle de Pensées, O. Jacob (2000), English version: Triangle of Thoughts, AMS (2001)

    Google Scholar 

  • 2. G. Amelino-Camelia, Are we at the dawn of quantum gravity phenomenology?, Lectures given at 35th Winter School of Theoretical Physics: From Cosmology to Quantum Gravity, Polanica, Poland, 1999, gr-qc/9910089

    Google Scholar 

  • 3. S. Weinberg, Gravitation and Cosmology, Wiley (1972) R. Wald, General Relativity, The University of Chicago Press (1984)

    Google Scholar 

  • 4. J. D. Bjørken and S. D. Drell, Relativistic Quantum Mechanics, McGraw–Hill (1964)

    Google Scholar 

  • 5. L. O’Raifeartaigh, Group Structure of Gauge Theories, Cambridge University Press (1986)

    Google Scholar 

  • 6. M. Göckeler and T. Schücker, Differential Geometry, Gauge Theories, and Gravity, Cambridge University Press (1987)

    Google Scholar 

  • 7. R. Gilmore, Lie Groups, Lie Algebras and some of their Applications, Wiley (1974) H. Bacry, Lectures Notes in Group Theory and Particle Theory, Gordon and Breach (1977)

    Google Scholar 

  • 8. N. Jacobson, Basic Algebra I, II, Freeman (1974,1980)

    Google Scholar 

  • 9. J. Madore, An Introduction to Noncommutative Differential Geometry and its Physical Applications, Cambridge University Press (1995) G. Landi, An Introduction to Noncommutative Spaces and their Geometry, hep-th/9701078, Springer (1997)

    Google Scholar 

  • 10. J. M. Gracia-Bondía, J. C. Várilly and H. Figueroa, Elements of Noncommutative Geometry, Birkhäuser (2000)

    Google Scholar 

  • 11. J. W. van Holten, Aspects of BRST quantization, hep-th/0201124, in this volume

    Google Scholar 

  • 12. J. Zinn-Justin, Chiral anomalies and topology, hep-th/0201220, in this volume

    Google Scholar 

  • 13. The Particle Data Group, Particle Physics Booklet and http://pdg.lbl.gov

    Google Scholar 

  • 14. G. ’t Hooft, Renormalizable Lagrangians for Massive Yang–Mills Fields, Nucl. Phys. B35 (1971) 167 G. ’t Hooft and M. Veltman, Regularization and Renormalization of Gauge Fields, Nucl. Phys. B44 (1972) 189 G. ’t Hooft and M. Veltman, Combinatorics of Gauge Fields, Nucl. Phys. B50 (1972) 318 B. W. Lee and J. Zinn-Justin, Spontaneously broken gauge symmetries I, II, III and IV, Phys. Rev. D5 (1972) 3121, 3137, 3155; Phys. Rev. D7 (1973) 1049

    Google Scholar 

  • 15. S. Glashow, Partial-symmetries of weak interactions, Nucl. Phys. 22 (1961) 579 A. Salam in Elementary Particle Physics: Relativistic Groups and Analyticity, Nobel Symposium no. 8, page 367, eds.: N. Svartholm, Almqvist and Wiksell, Stockholm 1968 S. Weinberg, A model of leptons, Phys. Rev. Lett. 19 (1967) 1264

    Google Scholar 

  • 16. J. Iliopoulos, An introduction to gauge theories, Yellow Report, CERN (1976)

    Google Scholar 

  • 17. G. Esposito-Farèse, Théorie de Kaluza–Klein et gravitation quantique, Thése de Doctorat, Université d’Aix-Marseille II, 1989

    Google Scholar 

  • 18. A. Connes, Noncommutative Geometry, Academic Press (1994)

    Google Scholar 

  • 19. A. Connes, Noncommutative Geometry and Reality, J. Math. Phys. 36 (1995) 6194

    Google Scholar 

  • 20. A. Connes, Gravity coupled with matter and the foundation of noncommutative geometry, hep-th/9603053, Comm. Math. Phys. 155 (1996) 109

    Google Scholar 

  • 21. H. Rauch, A. Zeilinger, G. Badurek, A. Wilfing, W. Bauspiess and U. Bonse, Verification of coherent spinor rotations of fermions, Phys. Lett. 54A (1975) 425

    Google Scholar 

  • 22. E. Cartan, Leçons sur la théorie des spineurs, Hermann (1938)

    Google Scholar 

  • 23. A. Connes, Brisure de symétrie spontanée et géométrie du point de vue spectral, Séminaire Bourbaki, 48ème année, 816 (1996) 313 A. Connes, Noncommutative differential geometry and the structure of space time, Operator Algebras and Quantum Field Theory, eds.: S. Doplicher et al., International Press, 1997

    Google Scholar 

  • 24. T. Schücker, Spin group and almost commutative geometry, hep-th/0007047

    Google Scholar 

  • 25. J.-P. Bourguignon and P. Gauduchon, Spineurs, opérateurs de Dirac et variations de métriques, Comm. Math. Phys. 144 (1992) 581

    Google Scholar 

  • 26. U. Bonse and T. Wroblewski, Measurement of neutron quantum interference in noninertial frames, Phys. Rev. Lett. 1 (1983) 1401

    Google Scholar 

  • 27. R. Colella, A. W. Overhauser and S. A. Warner, Observation of gravitationally induced quantum interference, Phys. Rev. Lett. 34 (1975) 1472

    Google Scholar 

  • 28. A. Chamseddine and A. Connes, The spectral action principle, hep-th/9606001, Comm. Math. Phys.186 (1997) 731

    Google Scholar 

  • 29. G. Landi and C. Rovelli, Gravity from Dirac eigenvalues, gr-qc/9708041, Mod. Phys. Lett. A13 (1998) 479

    Google Scholar 

  • 30. P. B. Gilkey, Invariance Theory, the Heat Equation, and the Atiyah–Singer Index Theorem, Publish or Perish (1984) S. A. Fulling, Aspects of Quantum Field Theory in Curved Space-Time, Cambridge University Press (1989)

    Google Scholar 

  • 31. B. Iochum, T. Krajewski and P. Martinetti, Distances in finite spaces from noncommutative geometry, hep-th/9912217, J. Geom. Phys. 37 (2001) 100

    Google Scholar 

  • 32. M. Dubois-Violette, R. Kerner and J. Madore, Gauge bosons in a noncommutative geometry, Phys. Lett. 217B (1989) 485

    Google Scholar 

  • 33. A. Connes, Essay on physics and noncommutative geometry, in The Interface of Mathematics and Particle Physics, eds.: D. G. Quillen et al., Clarendon Press (1990) A. Connes and J. Lott, Particle models and noncommutative geometry, Nucl. Phys. B 18B (1990) 29 A. Connes and J. Lott, The metric aspect of noncommutative geometry, in the proceedings of the 1991 Cargèse Summer Conference, eds.: J. Fröhlich et al., Plenum Press (1992)

    Google Scholar 

  • 34. J. Madore, Modification of Kaluza Klein theory, Phys. Rev. D 41 (1990) 3709

    Google Scholar 

  • 35. P. Martinetti and R. Wulkenhaar, Discrete Kaluza–Klein from Scalar Fluctuations in Noncommutative Geometry, hep-th/0104108, J. Math. Phys. 43 (2002) 182

    Google Scholar 

  • 36. T. Ackermann and J. Tolksdorf, A generalized Lichnerowicz formula, the Wodzicki residue and gravity, hep-th/9503152, J. Geom. Phys. 19 (1996) 143 T. Ackermann and J. Tolksdorf, The generalized Lichnerowicz formula and analysis of Dirac operators, hep-th/9503153, J. reine angew. Math. 471 (1996) 23

    Google Scholar 

  • 37. R. Estrada, J. M. Gracia-Bondía and J. C. Várilly, On summability of distributions and spectral geometry, funct-an/9702001, Comm. Math. Phys. 191 (1998) 219

    Google Scholar 

  • 38. B. Iochum, D. Kastler and T. Schücker, On the universal Chamseddine–Connes action: details of the action computation, hep-th/9607158, J. Math. Phys. 38 (1997) 4929 L. Carminati, B. Iochum, D. Kastler and T. Schücker, On Connes’ new principle of general relativity: can spinors hear the forces of space-time?, hep-th/9612228, Operator Algebras and Quantum Field Theory, eds.: S. Doplicher et al., International Press, 1997

    Google Scholar 

  • 39. M. Paschke and A. Sitarz, Discrete spectral triples and their symmetries, q-alg/9612029, J. Math. Phys. 39 (1998) 6191 T. Krajewski, Classification of finite spectral triples, hep-th/9701081, J. Geom. Phys. 28 (1998) 1

    Google Scholar 

  • 40. S. Lazzarini and T. Schücker, A farewell to unimodularity, hep-th/0104038, Phys. Lett. B 510 (2001) 277

    Google Scholar 

  • 41. B. Iochum and T. Schücker, A left-right symmetric model à la Connes–Lott, hep-th/9401048, Lett. Math. Phys. 32 (1994) 153 F. Girelli, Left-right symmetric models in noncommutative geometry? hep-th/0011123, Lett. Math. Phys. 57 (2001) 7

    Google Scholar 

  • 42. F. Lizzi, G. Mangano, G. Miele and G. Sparano, Constraints on unified gauge theories from noncommutative geometry, hep-th/9603095, Mod. Phys. Lett. A11 (1996) 2561

    Google Scholar 

  • 43. W. Kalau and M. Walze, Supersymmetry and noncommutative geometry, hep-th/9604146, J. Geom. Phys. 22 (1997) 77

    Google Scholar 

  • 44. D. Kastler, Introduction to noncommutative geometry and Yang–Mills model building, Differential geometric methods in theoretical physics, Rapallo (1990), 25 — , A detailed account of Alain Connes’ version of the standard model in non-commutative geometry, I, II and III, Rev. Math. Phys. 5 (1993) 477, Rev. Math. Phys. 8 (1996) 103 D. Kastler and T. Schücker, Remarks on Alain Connes’ approach to the standard model in non-commutative geometry, Theor. Math. Phys. 92 (1992) 522, English version, 92 (1993) 1075, hep-th/0111234 — , A detailed account of Alain Connes’ version of the standard model in non-commutative geometry, IV, Rev. Math. Phys. 8 (1996) 205 — , The standard model à la Connes–Lott, hep-th/9412185, J. Geom. Phys. 388 (1996) 1 J. C. Várilly and J. M. Gracia-Bondía, Connes’ noncommutative differential geometry and the standard model, J. Geom. Phys. 12 (1993) 223 T. Schücker and J.-M. Zylinski, Connes’ model building kit, hep-th/9312186, J. Geom. Phys. 16 (1994) 1 E. Alvarez, J. M. Gracia-Bondía and C. P. Martín, Anomaly cancellation and the gauge group of the Standard Model in Non-Commutative Geometry, hep-th/9506115, Phys. Lett. B364 (1995) 33 R. Asquith, Non-commutative geometry and the strong force, hep-th/9509163, Phys. Lett. B 366 (1996) 220 C. P. Martín, J. M. Gracia-Bondía and J. C. Várilly, The standard model as a noncommutative geometry: the low mass regime, hep-th/9605001, Phys. Rep. 294 (1998) 363 L. Carminati, B. Iochum and T. Schücker, The noncommutative constraints on the standard model à la Connes, hep-th/9604169, J. Math. Phys. 38 (1997) 1269 R. Brout, Notes on Connes’ construction of the standard model, hep-th/9706200, Nucl. Phys. Proc. Suppl. 65 (1998) 3 J. C. Várilly, Introduction to noncommutative geometry, physics/9709045, EMS Summer School on Noncommutative Geometry and Applications, Portugal, september 1997, ed.: P. Almeida T. Schücker, Geometries and forces, hep-th/9712095, EMS Summer School on Noncommutative Geometry and Applications, Portugal, september 1997, ed.: P. Almeida J. M. Gracia-Bondía, B. Iochum and T. Schücker, The Standard Model in Noncommutative Geometry and Fermion Doubling, hep-th/9709145, Phys. Lett. B 414 (1998) 123 D. Kastler, Noncommutative geometry and basic physics, Lect. Notes Phys. 543 (2000) 131 — , Noncommutative geometry and fundamental physical interactions: the Lagrangian level, J. Math. Phys. 41 (2000) 3867 K. Elsner, Noncommutative geometry: calculation of the standard model Lagrangian, hep-th/0108222, Mod. Phys. Lett. A16 (2001) 241

    Google Scholar 

  • 45. R. Jackiw, Physical instances of noncommuting coordinates, hep-th/0110057

    Google Scholar 

  • 46. N. Cabibbo, L. Maiani, G. Parisi and R. Petronzio, Bounds on the fermions and Higgs boson masses in grand unified theories, Nucl. Phys. B158 (1979) 295

    Google Scholar 

  • 47. L. Carminati, B. Iochum and T. Schücker, Noncommutative Yang–Mills and noncommutative relativity: A bridge over troubled water, hep-th/9706105, Eur. Phys. J. C8 (1999) 697

    Google Scholar 

  • 48. B. Iochum and T. Schücker, Yang–Mills–Higgs versus Connes–Lott, hep-th/9501142, Comm. Math. Phys. 178 (1996) 1 I. Pris and T. Schücker, Non-commutative geometry beyond the standard model, hep-th/9604115, J. Math. Phys. 38 (1997) 2255 I. Pris and T. Krajewski, Towards a Z’ gauge boson in noncommutative geometry, hep-th/9607005, Lett. Math. Phys. 39 (1997) 187 M. Paschke, F. Scheck and A. Sitarz, Can (noncommutative) geometry accommodate leptoquarks? hep-th/9709009, Phys . Rev. D59 (1999) 035003 T. Schücker and S. ZouZou, Spectral action beyond the standard model, hep-th/0109124

    Google Scholar 

  • 49. A. Connes and H. Moscovici, Hopf algebra, cyclic cohomology and the transverse index theorem, Comm. Math. Phys. 198 (1998) 199 D. Kreimer, On the Hopf algebra structure of perturbative quantum field theories, q-alg/9707029, Adv. Theor. Math. Phys. 2 (1998) 303 A. Connes and D. Kreimer, Renormalization in quantum field theory and the Riemann-Hilbert problem. 1. The Hopf algebra structure of graphs and the main theorem, hep-th/9912092, Comm. Math. Phys. 210 (2000) 249 A. Connes and D. Kreimer, Renormalization in quantum field theory and the Riemann–Hilbert problem. 2. The beta function, diffeomorphisms and the renormalization group, hep-th/0003188, Comm. Math. Phys. 216 (2001) 215 for a recent review, see J. C. Várilly, Hopf algebras in noncommutative geometry, hep-th/010977

    Google Scholar 

  • 50. S. Majid and T. Schücker, Z2 x Z2 Lattice as Connes–Lott–quantum group model, hep-th/0101217, J. Geom. Phys. 43 (2002) 1

    Google Scholar 

  • 51. J. C. Várilly and J. M. Gracia-Bondía, On the ultraviolet behaviour of quantum fields over noncommutative manifolds, hep-th/9804001, Int. J. Mod. Phys. A14 (1999) 1305 T. Krajewski, Géométrie non commutative et interactions fondamentales, Thése de Doctorat, Université de Provence, 1998, math-ph/9903047 C. P. Martín and D. Sanchez-Ruiz, The one-loop UV divergent structure of U(1) Yang–Mills theory on noncommutative R4, hep-th/9903077, Phys. Rev. Lett. 83 (1999) 476 M. M. Sheikh-Jabbari, Renormalizability of the supersymmetric Yang–Mills theories on the noncommutative torus, hep-th/9903107, JHEP 9906 (1999) 15 T. Krajewski and R. Wulkenhaar, Perturbative quantum gauge fields on the noncommutative torus, hep-th/9903187, Int. J. Mod. Phys. A15 (2000) 1011 S. Cho, R. Hinterding, J. Madore and H. Steinacker, Finite field theory on noncommutative geometries, hep-th/9903239, Int. J. Mod. Phys. D9 (2000) 161

    Google Scholar 

  • 52. M. Rieffel, Irrational Rotation C*-Algebras, Short Comm. I.C.M. 1978 A. Connes, C* algèbres et géométrie différentielle, C.R. Acad. Sci. Paris, Ser. A-B (1980) 290, English version hep-th/0101093 A. Connes and M. Rieffel, Yang–Mills for non-commutative two-tori, Contemp. Math. 105 (1987) 191

    Google Scholar 

  • 53. J. Bellissard, K-theory of C*-algebras in solid state physics, in: Statistical Mechanics and Field Theory: Mathematical Aspects, eds.: T. C. Dorlas et al., Springer (1986) J. Bellissard, A. van Elst and H. Schulz-Baldes, The noncommutative geometry of the quantum Hall effect, J. Math. Phys. 35 (1994) 5373

    Google Scholar 

  • 54. A. Connes and G. Landi, Noncommutative manifolds, the instanton algebra and isospectral deformations, math.QA/0011194, Comm. Math. Phys. 216 (2001) 215 A. Connes and M. Dubois-Violette, Noncommutative finite-dimensional manifolds I. Spherical manifolds and related examples, math.QA/0107070

    Google Scholar 

  • 55. M. Chaichian, P. Prešnajder, M. M. Sheikh-Jabbari and A. Tureanu, Noncommutative standard model: Model building, hep-th/0107055 X. Calmet, B. Jurčo, P. Schupp, J. Wess and M. Wohlgenannt, The standard model on non-commutative space-time, hep-ph/0111115

    Google Scholar 

  • 56. A. Connes and C. Rovelli, Von Neumann algebra Automorphisms and time-thermodynamics relation in general covariant quantum theories, gr-qc/9406019, Class. Quant. Grav. 11 (1994) 1899 C. Rovelli, Spectral noncommutative geometry and quantization: a simple example, gr-qc/9904029, Phys. Rev. Lett. 83 (1999) 1079 M. Reisenberger and C. Rovelli, Spacetime states and covariant quantum theory, gr-qc/0111016

    Google Scholar 

  • 57. W. Kalau, Hamiltonian formalism in non-commutative geometry, hep-th/9409193, J. Geom. Phys. 18 (1996) 349 E. Hawkins, Hamiltonian gravity and noncommutative geometry, gr-qc/9605068, Comm. Math. Phys. 187 (1997) 471 T. Kopf and M. Paschke, A spectral quadruple for the De Sitter space, math-ph/0012012 A. Strohmaier, On noncommutative and semi-Riemannian geometry, math-ph/0110001

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Eike Bick Frank Daniel Steffen

Rights and permissions

Reprints and permissions

About this chapter

Cite this chapter

Schücker, T. Forces from Connes’ Geometry. In: Bick, E., Steffen, F.D. (eds) Topology and Geometry in Physics. Lecture Notes in Physics, vol 659. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-31532-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-31532-2_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-23125-7

  • Online ISBN: 978-3-540-31532-2

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics