Skip to main content

Abstract

Robert Koch’s invention of pure culture techniques at the end of the nineteenth century focused microbiology on the isolation of bacteria for laboratory studies. Even today, in clinical diagnostics and foodstuff biotechnology, cultivation remains the gold standard because full characterisation of metabolic capabilities, resistance and pathogenesis can still only be achieved with pure cultures. “Winds of change” (Olsen et al. 1994) blew in the field of microbiology when the first cultivation-independent investigations reported an immense array of completely unexpected microbial diversity in the environment (Torsvik et al. 1990). Today it is estimated that only 1% of the microbial diversity in the biosphere can be assessed by means of standard cultivation techniques (Amann et al. 1995; Curtis et al. 2002). Although new approaches have recently been introduced to gain access to the “not currently cultureable majority” (Connon and Giovannoni 2002; Rappe et al. 2002; Zengler et al. 2002), they are not keeping pace with the substantial set of molecular tools to address the diversity and structure of microbial communities. Examples of these molecular tools are the powerful PCR-based methods that have been established for direct amplification, cloning and analysis of ribosomal RNA (rRNA) genes from the environment (Pace et al. 1985; Olsen et al. 1986; Giovannoni et al. 1990; Ward et al. 1990). Beyond diversity, the design and application of specific rRNA-targeted oligonucleotide probes allows insights into the structure of microbial communities in situ (Stahl and Amann 1991).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abe T, Kanaya S, Kinouchi M, Ichiba Y, Kozuki T, Ikemura T (2003) Informatics for unveiling hidden genome signatures. Genome Res 13:693–702

    PubMed  CAS  Google Scholar 

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    PubMed  CAS  Google Scholar 

  • Amann RI, Ludwig W, Schleifer KH (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59:143–169

    PubMed  CAS  Google Scholar 

  • Apweiler R, et al (2004) UniProt: the universal protein knowledgebase. Nucleic Acid Res 32:D115–D119

    PubMed  CAS  Google Scholar 

  • Asakawa S, et al (1997) Human BAC library: construction and rapid screening. Gene 191:69–79

    PubMed  CAS  Google Scholar 

  • Ashburner M, et al (2000) Gene ontology: tool for the unification of biology. Nat Genet 25:25–29

    PubMed  CAS  Google Scholar 

  • Badger JH, Olsen GJ (1999) CRITICA: coding region identification tool invoking comparative analysis. Mol Biol Evol 16:512–524

    PubMed  CAS  Google Scholar 

  • Bateman A, et al (2004) The Pfam protein families database. Nucleic Acid Res 32:D138–D141

    PubMed  CAS  Google Scholar 

  • Beja O, et al (2000a) Bacterial rhodopsin: evidence for a new type of phototrophy in the sea. Science 289:1902–1906

    PubMed  CAS  Google Scholar 

  • Beja O, et al (2000b) Construction and analysis of bacterial artificial chromosome libraries from a marine microbial assemblage. Environ Microbiol 2:516–529

    PubMed  CAS  Google Scholar 

  • Beja O, Spudich EN, Spudich JL, Leclerc M, DeLong EF (2001) Proteorhodopsin phototrophy in the ocean. Nature 411:786–789

    PubMed  CAS  Google Scholar 

  • Beja O, et al (2002) Comparative genomic analysis of archaeal genotypic variants in a single population and in two different oceanic provinces. Appl Environ Microbiol 68:335–345

    PubMed  CAS  Google Scholar 

  • Bendtsen JD, Nielsen H, von Heijne G, Brunak S (2004) Improved prediction of signal peptides: SignalP 3.0. J Mol Biol 340:783–795

    PubMed  Google Scholar 

  • Boeckmann B, et al (2003) The SWISS-PROT protein knowledgebase and its supplement TrEMBL in 2003. Nucleic Acid Res 31:365–370

    PubMed  CAS  Google Scholar 

  • Chenna R, et al (2003) Multiple sequence alignment with the Clustal series of programs. Nucleic Acid Res 31:3497–3500

    PubMed  CAS  Google Scholar 

  • Cole JR, et al (2003) The ribosomal database project (RDP-II): previewing a new autoaligner that allows regular updates and the new prokaryotic taxonomy. Nucleic Acid Res 31:442–443

    PubMed  CAS  Google Scholar 

  • Collins J, Hohn B (1978) Cosmids — type of plasmid gene-cloning vector that is packageable invitro in bacteriophage lambda-heads. Proc Natl Acad Sci USA 75:4242–4246

    PubMed  CAS  Google Scholar 

  • Connon SA, Giovannoni SJ (2002) High-throughput methods for culturing microorganisms in very-low-nutrient media yield diverse new marine isolates. Appl Environ Microbiol 68:3878–3885

    PubMed  CAS  Google Scholar 

  • Cottrell MT, Moore JA, Kirchman DL (1999) Chitinases from uncultured marine microor-ganisms. Appl Environ Microbiol 65:2553–2557

    PubMed  CAS  Google Scholar 

  • Courtois S, et al (2003) Recombinant environmental libraries provide access to microbial diversity for drug discovery from natural products. Appl Environ Microbiol 69:49–55

    PubMed  CAS  Google Scholar 

  • Curtis TP, Sloan WT, Scannell JW (2002) Estimating prokaryotic diversity and its limits. Proc Natl Acad Sci USA 99:10494–10499

    PubMed  CAS  Google Scholar 

  • De la Torre JR, et al (2003) Proteorhodopsin genes are distributed among divergent marine bacterial taxa. Proc Natl Acad Sci USA 100:12830–12835

    PubMed  Google Scholar 

  • Delcher AL, Harmon D, Kasif S, White O, Salzberg SL (1999) Improved microbial gene identification with GLIMMER. Nucleic Acid Res 27:4636–4641

    PubMed  CAS  Google Scholar 

  • DeLong EF (2004) Microbial population genomics and ecology. In: Fraser CM, Read TD, Nelson KE (eds) Microbial genomics. Humana, Totowa, pp 419–442

    Google Scholar 

  • Dennis P, Edwards EA, Liss SN, Fulthorpe R (2003) Monitoring gene expression in mixed microbial communities by using DNA microarrays. Appl Environ Microbiol 69:769–778

    PubMed  CAS  Google Scholar 

  • Entcheva P, Liebl W, Johann A, Hartsch T, Streit WR (2001) Direct cloning from enrichment cultures, a reliable strategy for isolation of complete operons and genes from microbial consortia. Appl Environ Microbiol 67:89–99

    PubMed  CAS  Google Scholar 

  • Frishman D, et al (2001) Functional and structural genomics using PEDANT. Bioinformatics 17:44–57

    PubMed  CAS  Google Scholar 

  • Gaasterland T, Sensen CW (1996) MAGPIE: automated genome interpretation. Trends Genet 12:76–78

    PubMed  CAS  Google Scholar 

  • Garrity GM, Jonson KL, Bell J, Searles DB (2002) Taxonomic outline of the prokaryotes. In: Bergey’s manual of systematic bacteriology, 2nd edn. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Giovannoni SJ, Britschgi TB, Moyer CL, Field KG (1990) Genetic diversity in Sargasso sea bacterioplankton. Nature 345:60–63

    PubMed  CAS  Google Scholar 

  • Goodman RM, Liles M (2001) Template specific termination in a polymerase chain reaction. US Patent

    Google Scholar 

  • Green ED, Birren B, Klapholz S, Myers RM, Hieter P (1997) Genome analysis: a laboratory manual, 1st edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.

    Google Scholar 

  • Guo FB, Ou HY, Zhang CT (2003) ZCURVE: a new system for recognizing protein-coding genes in bacterial and archaeal genomes. Nucleic Acid Res 31:1780–1789

    PubMed  CAS  Google Scholar 

  • Hallam SJ, Girguis PR, Preston CM, Richardson PM, DeLong EF (2003) Identification of methyl coenzyme M reductase A (mcrA) genes associated with methane-oxidizing archaea. Appl Environ Microbiol 69:5483–5491

    PubMed  CAS  Google Scholar 

  • Handelsman JRM (1998) Molecular biological access to the chemistry of unknown soil microbes — a new frontier for natural products. Chem Biol 5:R245–R249

    PubMed  CAS  Google Scholar 

  • Handelsman J, Liles M, Mann D, Riesenfeld C, Goodman RM (2002) Cloning the metagenome: culture-independent access to the diversity and functions of the uncultivated microbial world. In: Brendan W, Dorrell N (eds) Functional microbial genomics. Academic, San Diego, pp 241–255

    Google Scholar 

  • Henne A, Daniel R, Schmitz RA, Gottschalk G (1999) Construction of environmental DNA libraries in Escherichia coli and screening for the presence of genes conferring utilization of 4-hydroxybutyrate. Appl Environ Microbiol 65:3901–3907

    PubMed  CAS  Google Scholar 

  • Hughes DS, Felbeck H, Stein JL (1997) A histidine protein kinase homolog from the endosymbiont of the hydrothermal vent tubeworm Riftia pachyptila. Appl Environ Microbiol 63:3494–3498

    PubMed  CAS  Google Scholar 

  • Kanehisa M, Goto S, Kawashima S, Okuno Y, Hattori M (2004) The KEGG resource for deciphering the genome. Nucleic Acid Res 32:D277–D280

    PubMed  CAS  Google Scholar 

  • Karlin S, Campbell AM, Mrazek J (1998) Comparative DNA analysis across diverse genomes. Annu Rev Genet 32:185–225

    PubMed  CAS  Google Scholar 

  • Katoh K, Misawa K, Kuma K, Miyata T (2002) MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acid Res 30:3059–3066

    PubMed  CAS  Google Scholar 

  • Kim UJ, Shizuya H, Dejong PJ, Birren B, Simon MI (1992) Stable propagation of cosmid sized human DNA inserts in an F-factor based vector. Nucleic Acid Res 20:1083–1085

    PubMed  CAS  Google Scholar 

  • Kim UJ, et al (1996) Construction and characterization of a human bacterial artificial chromosome library. Genomics 34:213–218

    PubMed  CAS  Google Scholar 

  • Korf I, Yandell M, Bedell J (2003) BLAST. O’Reilly & Associates, Cambridge

    Google Scholar 

  • Krogh A, Larsson B, von Heijne G, Sonnhammer ELL (2001) Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 305:567–580

    PubMed  CAS  Google Scholar 

  • Krüger M, et al (2003) A conspicuous nickel protein in microbial mats that oxidize methane anaerobically. Nature 426:878–881

    PubMed  Google Scholar 

  • Leonardo ED, Sedivy JM (1990) A new vector for cloning large eukaryotic DNA segments in Escherichia coli. Bio-Technology 8:841–844

    PubMed  CAS  Google Scholar 

  • Liles MR, Manske BF, Bintrim SB, Handelsman J, Goodman RM (2003) A census of rRNA genes and linked genomic sequences within a soil metagenomic library. Appl Environ Microbiol 69:2684–2691

    PubMed  CAS  Google Scholar 

  • Lopez-Garcia P, Brochier C, Moreira D, Rodriguez-Valera F (2004) Comparative analysis of a genome fragment of an uncultivated mesopelagic crenarchaeote reveals multiple horizontal gene transfers. Environ Microbiol 6:19–34

    PubMed  CAS  Google Scholar 

  • Lowe TM, Eddy SR (1997) tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acid Res 25:955–964

    PubMed  CAS  Google Scholar 

  • Ludwig W, et al (2004) ARB: a software environment for sequence data. Nucleic Acid Res 32:1363–1371

    PubMed  CAS  Google Scholar 

  • MacNeil IA, et al (2001) Expression and isolation of antimicrobial small molecules from soil DNA libraries. J Mol Microbiol Biotechnol 3:301–308

    PubMed  CAS  Google Scholar 

  • McHardy AC, Goesmann A, Pühler A, Meyer F (2004) Development of joint application strategies for two microbial gene finders. Bioinformatics 20:1622–1631

    PubMed  CAS  Google Scholar 

  • Meyer F, et al (2003) GenDB — an open source genome annotation system for prokaryote genomes. Nucleic Acid Res 31:2187–2195

    PubMed  CAS  Google Scholar 

  • Monaco AP, Larin Z (1994) Yacs, Bacs, Pacs and Macs — artificial chromosomes as research tools. Trends Biotechnol 12:280–286

    PubMed  CAS  Google Scholar 

  • Mount DW (2001) Bioinformatics: sequence and genome analysis. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.

    Google Scholar 

  • Mulder NJ, et al (2003) The InterPro database, 2003 brings increased coverage and new features. Nucleic Acid Res 31:315–318

    PubMed  CAS  Google Scholar 

  • Nelson KE (2003) The future of microbial genomics. Environ Microbiol 5:1223–1225

    PubMed  Google Scholar 

  • Olsen GJ, Lane DJ, Giovannoni SJ, Pace NR, Stahl DA (1986) Microbial ecology and evolution: a ribosomal RNA approach. Annu Rev Microbiol 40:337–365

    PubMed  CAS  Google Scholar 

  • Olsen GJ, Woese CR, Overbeek R (1994) The winds of (evolutionary) change: breathing new life into microbiology. J Bacteriol 176:1–6

    PubMed  CAS  Google Scholar 

  • Osoegawa K, et al (1998) An improved approach for construction of bacterial artificial chromosome libraries. Genomics 52:1–8

    PubMed  CAS  Google Scholar 

  • Osoegawa K, et al (2000) Bacterial artificial chromosome libraries for mouse sequencing and functional analysis. Genome Res 10:116–128

    PubMed  CAS  Google Scholar 

  • Overbeek R, Fonstein M, D’Souza M, Pusch GD, Maltsev N (1999) The use of gene clusters to infer functional coupling. Proc Natl Acad Sci USA 96:2896–2901

    PubMed  CAS  Google Scholar 

  • Overbeek R, et al (2000) WIT: integrated system for high-throughput genome sequence analysis and metabolic reconstruction. Nucleic Acid Res 28:123–125

    PubMed  CAS  Google Scholar 

  • Pace NR (1997) A molecular view of microbial diversity and the biosphere. Science 276:734–740

    PubMed  CAS  Google Scholar 

  • Pace NR, Stahl DA, Olsen GJ, Lane DJ (1985) Analyzing natural microbial populations by rRNA sequences. ASM News 51:4–12

    Google Scholar 

  • Peplies J, Lau SCK, Pernthaler A, Amann R, Glöckner FO (2004) Application and validation of DNA microarrays for the 16S rRNA-based analysis of marine bacterioplankton. Environ Microbiol 6:638–645

    PubMed  CAS  Google Scholar 

  • Piel J (2002) A polyketide synthase-peptide synthetase gene cluster from an uncultured bacterial symbiont of Paederus beetles. Proc Natl Acad Sci USA 99:14002–14007

    PubMed  CAS  Google Scholar 

  • Pride DT, Meinersmann RJ, Wassenaar TM, Blaser MJ (2003) Evolutionary implications of microbial genome tetranucleotide frequency biases. Genome Res 13:145–158

    PubMed  CAS  Google Scholar 

  • Quaiser A, et al (2002) First insight into the genome of an uncultivated crenarchaeote from soil. Environ Microbiol 4:603–611

    PubMed  CAS  Google Scholar 

  • Quaiser A, et al (2003) Acidobacteria form a coherent but highly diverse group within the bacterial domain: evidence from environmental genomics. Mol Microbiol 50:563–575

    PubMed  CAS  Google Scholar 

  • Rappe MS, Connon SA, Vergin KL, Giovannoni SJ (2002) Cultivation of the ubiquitous SAR11 marine bacterioplankton clade. Nature 418:630–633

    PubMed  CAS  Google Scholar 

  • Riesenfeld CS, Schloss PD, Handelsman J (2004) Metagenomics: genomic analysis of microbial communities. Annu Rev Genet 38:525–552

    PubMed  CAS  Google Scholar 

  • Rodriguez-Valera F (2004) Environmental genomics, the big picture? FEMS Microbiol Lett 231:153–158

    PubMed  CAS  Google Scholar 

  • Rondon MR, Raffel SJ, Goodman RM, Handelsman J (1999) Toward functional genomics in bacteria: analysis of gene expression in Escherichia coli from a bacterial artificial chromosome library of Bacillus cereus. Proc Natl Acad Sci USA 96:6451–6455

    PubMed  CAS  Google Scholar 

  • Rondon MR, et al (2000) Cloning the soil metagenome: a strategy for accessing the genetic and functional diversity of uncultured microorganisms. Appl Environ Microbiol 66:2541–2547

    PubMed  CAS  Google Scholar 

  • Rutherford K, et al (2000) Artemis: sequence visualization and annotation. Bioinformatics 16:944–945

    PubMed  CAS  Google Scholar 

  • Sambrook J, Russel DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.

    Google Scholar 

  • Sandberg R, Winberg G, Branden CI, Kaske A, Ernberg I, Coster J (2001) Capturing whole-genome characteristics in short sequences using a naive Bayesian classifier. Genome Res 11:1404–1409

    PubMed  CAS  Google Scholar 

  • Schleper C, Swanson RV, Mathur EJ, DeLong EF (1997) Characterization of a DNA polymerase from the uncultivated psychrophilic archaeon Cenarchaeum symbiosum. 179:7803–7811

    CAS  Google Scholar 

  • Schleper C, Delong EF, Preston CM, Feldman RA, Wu KY, Swanson RV (1998) Genomic analysis reveals chromosomal variation in natural populations of the uncultured psychrophilic archaeon Cenarchaeum symbiosum. J Bacteriol 180:5003–5009

    PubMed  CAS  Google Scholar 

  • Schloss PD, Handelsman J (2003) Biotechnological prospects from metagenomics. Curr Opin Biotechnol 14:303–310

    PubMed  CAS  Google Scholar 

  • Schmeisser C, et al (2003) Metagenome survey of biofilms in drinking-water networks. Appl Environ Microbiol 69:7298–7309

    PubMed  CAS  Google Scholar 

  • Schmidt TM, DeLong EF, Pace NR (1991) Analysis of a marine picoplankton community by 16S rRNA gene cloning and sequencing. J Bacteriol 173:4371–4378

    PubMed  CAS  Google Scholar 

  • Sebat JL, Colwell FS, Crawford RL (2003) Metagenomic profiling: microarray analysis of an environmental genomic library. Appl Environ Microbiol 69:4927–4934

    PubMed  CAS  Google Scholar 

  • Sheng Y, Mancino V, Birren B (1995) Transformation of Escherichia coli with large DNA molecules by electroporation. Nucleic Acid Res 23:1990–1996

    PubMed  CAS  Google Scholar 

  • Shizuya H, et al (1992) Cloning and stable maintenance of 300-kilobase-pair fragments of human DNA in Escherichia coli using an F-factor-based vector. Proc Natl Acad Sci USA 89:8794–8797

    PubMed  CAS  Google Scholar 

  • Sonnhammer ELL, Durbin R (1994) A workbench for large-scale sequence homology analysis. Comput Appl Biosci 10:301–307

    PubMed  CAS  Google Scholar 

  • Stahl DA, Amann R (1991) Development and application of nucleic acid probes. In: Stacke-brandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. Wiley, Chichester, pp 205–248

    Google Scholar 

  • Stahl DA, Tiedje JM (2002) Microbial ecology and genomics: a crossroad of opportunity. American Academy of Microbiology, Washington, D.C.

    Google Scholar 

  • Stein JL, Marsh TL, Wu KY, Shizuya H, DeLong EF (1996) Characterization of uncultivated prokaryotes: Isolation and analysis of a 40-kilobase-pair genome fragment front a planktonic marine archaeon. J Bacteriol 178:591–599

    PubMed  CAS  Google Scholar 

  • Swofford DL, Olsen GJ, Waddel PJ, Hillis DM (1996) Phylogenetic Inference. In: Hillis DM, Moritz C, Marble BK (eds) Molecular systematics, 2nd edn. Sinauer Associates, Sunderland, Mass., pp 407–514

    Google Scholar 

  • Tao Q, Zhang HB (1998) Cloning and stable maintenance of DNA fragments over 300 kb in Escherichia coli with conventional plasmid-based vectors. Nucleic Acids Res 26:4901–4909

    PubMed  CAS  Google Scholar 

  • Tatusov RL, et al (2003) The COG database: an updated version includes eukaryotes. BMC Bioinform 4:41

    Google Scholar 

  • Teeling H, Meyerdierks A, Bauer M, Amann R, Glöckner FO (2004a) Application of tetranucleotide frequencies for the assignment of genomic fragments. Environ Microbiol 6:938–947

    PubMed  CAS  Google Scholar 

  • Teeling H, Waldmann J, Lombardot T, Bauer M, Glöckner FO (2004b) TETRA: a web-service and a stand-alone program for the analysis and comparison of tetranucleotide usage patterns in DNA sequences sequences. BMC Bioinform 5:163

    Google Scholar 

  • Torsvik V, Goksoyr J, Daae FL (1990) High diversity in DNA of soil bacteria. Appl Environ Microbiol 56:782–787

    PubMed  CAS  Google Scholar 

  • Tyson GW, et al (2004) Community structure and metabolism through reconstruction of microbial genomes from the environment. Nature 428:37–43

    PubMed  CAS  Google Scholar 

  • Uchiyama T, Abe T, Ikemura T, Watanabe K (2005) Substrate-induced gene-expression screening of environmental metagenome libraries for isolation of catabolic genes. Nat Biotechnol 23:88–93

    PubMed  CAS  Google Scholar 

  • Venter JC, et al (2004) Environmental genome shotgun sequencing of the Sargasso sea. Science 304:66–74

    PubMed  CAS  Google Scholar 

  • Walker DR, Koonin EV (1997) SEALS: a system for easy analysis of lots of sequences. Intell Sys Mol Biol 5:333–339

    CAS  Google Scholar 

  • Ward DM, Weller R, Bateson MM (1990) 16S rRNA sequences reveal numerous uncultured microorganisms in a natural community. Nature 345:63–65

    PubMed  CAS  Google Scholar 

  • Wild J, Hradecna Z, Szybalski W (2002) Conditionally amplifiable BACs: switching from single-copy to high-copy vectors and genomic clones. Genome Res 12:1434–1444

    PubMed  CAS  Google Scholar 

  • Woo SS, Jiang JM, Gill BS, Paterson AH, Wing RA (1994) Construction and characterization of a bacterial artificial chromosome library of sorghum-bicolor. Nucleic Acid Res 22:4922–4931

    PubMed  CAS  Google Scholar 

  • Zengler K, et al (2002) Cultivating the uncultured. Proc Natl Acad Sci USA 99:15681–15686

    PubMed  CAS  Google Scholar 

  • Zhou J, Bruns MA, Tiedje JM (1996) DNA recovery from soils of diverse composition. Appl Environ Microbiol 62:316–322

    PubMed  CAS  Google Scholar 

  • Zimmer R, Verrinder GA (1997) Construction and characterization of a large-fragment chicken bacterial artificial chromosome library. Genomics 42:217–226

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Glöckner, F.O., Meyerdierks, A. (2006). Metagenome Analyses. In: Stackebrandt, E. (eds) Molecular Identification, Systematics, and Population Structure of Prokaryotes. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-31292-5_8

Download citation

Publish with us

Policies and ethics