Skip to main content

DNA-DNA Reassociation Methods Applied to Microbial Taxonomy and Their Critical Evaluation

  • Chapter
Molecular Identification, Systematics, and Population Structure of Prokaryotes

Abstract

DNA-DNA reassociation techniques are used for many purposes, but in the field of microbial systematics they are in most cases linked to the circumscription of prokaryotic species. Actually, as we will see, the use of whole genome hybridizations in the definition of prokaryotic species has had an enormous influence since the origin of the polythetic classification system (Rosselló-Mora and Kämpfer 2004). The importance of morphology in the middle of the eighteenth century was substituted for that of biochemical properties at the beginning of the nineteenth century; and subsequently the emerging “modern spectrum” techniques emphasized the importance of genetic measurements, such as DNA-DNA reassociation experiments. However, after almost 50 years of the application of these techniques to circumscribe species, there is increasing reluctance to use them because of the intrinsic pitfalls in the methods (e.g. Stackebrandt 2003; Stackebrandt et al. 2002). Consequently, the question that arises is: if DNA reassociation techniques are to be substituted, what will take their place? However, in my opinion, it is still too soon to substitute these techniques because of several reasons: (a) the use of such parameters in the definition of species has been of paramount influence and has actually determined the size and shape of what we call ‘species’, (b) there are almost 5,000 species described (Garrity et al. 2004), many of them based on reassociation experiments, and the legitimacy of new circumscription methods should be validated and (c) the alternatives proposed are not yet standardized and tested sufficiently enough to offer a reliable, pragmatic and easy to use circumscription tool.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adnan S, Li N, Miura H, Hashimoto Y, Yamamoto H, Ezaki T (1993) Covalently immobilized DNA plate for luminometric DNA-DNA hybridization to identify viridans streptococci in under 2 hours. FEMS Microbiol Lett 106:139–142

    Article  PubMed  CAS  Google Scholar 

  • Amann RI, Lin C, Key R, Montgomery L, Stahl D (1992) Diversity among Fibrobacter isolates: Towards a phylogenetic classification. System Appl Microbiol 15:23–31

    Google Scholar 

  • Bolton ET, McCarthy BJ (1962) A general method for the isolation of RNA complementary to DNA. Proc Nat Acad Sci USA 48:1390–1397

    Article  PubMed  CAS  Google Scholar 

  • Brenner DJ (1978) Characterization and clinical identification of Enterobacteriaceae by DNA hybridization. Prog Clin Pathol 7:71–17

    PubMed  CAS  Google Scholar 

  • Brenner DJ, Cowie DB (1968) Thermal stability of Escherichia coli-Salmonella typhymurium deoxyribonucleic acid duplexes. J Bacteriol 95:2258–2262

    PubMed  CAS  Google Scholar 

  • Brenner DJ, Fanning GR, Johnson KE, Citarella RV, Falkow S (1969a) Polynucleotide sequence relationships among members of Enterobacteriaceae. J Bacteriol 98:637–650

    PubMed  CAS  Google Scholar 

  • Brenner DJ, Fanning GR, Rake AV, Johnson KE (1969b) Batch procedure for thermal elution of DNA from hydroxyapatite. Anal Biochem 28:447–459

    Article  PubMed  CAS  Google Scholar 

  • Brigandt I (2002) Species pluralism does not imply species eliminativism. Phyl Sci 70:1305–1316

    Article  Google Scholar 

  • Cardinali G, Liti G, Martini A (2000) Non-radioactive dot-blot DNA reassociation for unequivocal yeast identification. Int J Syst Evol Microbiol 50:931–936

    PubMed  Google Scholar 

  • Cho J-C, Tiedje JM (2001) Bacterial species determination from DNA-DNA hybridization by using genome fragments and DNA microarrays. Appl Environ Microbiol 67:3677–3682

    Article  PubMed  CAS  Google Scholar 

  • Christensen H, Angen Ø, Mutters R, Olsen JE, Bisgaard M (2000) DNA-DNA hybridization determined in micro-wells using covalent attachment of DNA. Int J Syst Evol Microbiol 50:1095–1102

    PubMed  CAS  Google Scholar 

  • Crosa JH, Brenner DJ, Falkow S (1973) Use of a single-strand specific nuclease for analysis of bacterial and plasmid deoxyribonucleic acid homo-and hetero-duplexes. J Bacteriol 115:904–911

    PubMed  CAS  Google Scholar 

  • De Ley J, Cattoir H, Reynaerts A (1970) The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12:133–142

    Article  PubMed  Google Scholar 

  • De Ley J, Tijtgat R (1970) Evaluation of membrane filter methods for DNA-DNA hybridization. Antonie Van Leeuwenhoek 36:461–474

    Article  PubMed  Google Scholar 

  • Ereshefsky M (1994) Some problems with the Linnaean hierarchy. Phyl Sci 61:186–205

    Article  Google Scholar 

  • Ereshefsky M (1998) Species pluralism and anti-realism. Phyl Sci 65:103–120

    Article  Google Scholar 

  • Euzéby JP, Tindall BJ (2004) Valid publication of new names or new combinations: making use of the validation lists. ASM News 70:258–259

    Google Scholar 

  • Ezaki T, Hashimoto Y, Yabuuchi E (1989) Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39:224–229

    Article  Google Scholar 

  • Fitch WM (2000) Homology: a personal view on some of the problems. Trends Genet 16:227–231

    Article  PubMed  CAS  Google Scholar 

  • Fox GE, Wisotzkey JD, Jurtshuk P Jr (1992) How close is close: 16S rRNA sequence identity may not be sufficient to guarantee species identity. Int J Syst Bacteriol 42:166–170

    Article  PubMed  CAS  Google Scholar 

  • Gade D, Schlesner H, Glöckner FO, Amann R, Pfeiffer S, Thomm M (2004) Identification of Planctomycetes with order-, genus-, and strain-specific 16S rRNA-targeted probes. Microbiol Ecol 47:243–251

    Article  CAS  Google Scholar 

  • Garrity GM, Bell JA, Lilburn TG (2004) Taxonomic outline of the Prokaryotes. In: Boone DR, Castenholz RW, Garrity GM (eds) Bergey’s manual of systematic bacteriology, 2nd edn, rel 5.0. Springer, Berlin Heidelberg New York, DOI:10.1007/bergeysoutline200405

    Google Scholar 

  • Gillis M, Vandamme P, De Vos P, Swings J, Kersters K (2001) Polyphasic taxonomy. In: Boone DR, Castenholz RW, Garrity GM (eds) Bergey’s manual of systematic bacteriology, 2nd edn. Springer, Berlin Heidelberg New York, pp 43–48

    Google Scholar 

  • González JM, Sáiz-Jiménez C (2004) A simple fluorimetric method for the estimation of DNA-DNA relatedness between closely related microorganisms by thermal denaturation temperatures. Extremophiles 9:75–79

    Article  PubMed  CAS  Google Scholar 

  • Goodfellow M, Manfio GP, Chun J (1997) Towards a practical species concept for cultivable bacteria. In: Claridge MF, Dawah HA, Wilson MR (eds) Species: the units of biodiversity. Chapman & Hall, London, pp 25–59

    Google Scholar 

  • Goris J, Suzuki K-I, De Vos P, Nakase T, Kersters K (1998) Evaluation of a microplate DNA-DNA hybridization method compared with the initial renaturation method. Can J Microbiol 44:1148–1153

    Article  CAS  Google Scholar 

  • Grimont PAD (1988) Use of DNA reassociation in bacterial classification. Can J Microbiol 34:541–546

    Article  PubMed  CAS  Google Scholar 

  • Grimont PAD, Popoff MY, Grimont F. Coynault C, Lemelin M (1980) Reproducibility and correlation study of three deoxyribonucleic acid hybridization procedures. Curr Microbiol 4:325–330

    Article  CAS  Google Scholar 

  • Hey J (2001) The mind of the species problem. Trends Ecol Evol 16:326–329

    Article  PubMed  Google Scholar 

  • Hey J, Waples RS, Arnold ML, Butlin RK, Harrison RG (2003) Understanding and confronting species uncertainty in biology and conservation. Trends Ecol Evol 18:597–603

    Article  Google Scholar 

  • Hull DL (1997) The ideal species concept — and why we can’t get it. In: Claridge MF, Dawah HA, Wilson MR (eds) Species: the units of biodiversity. Chapman & Hall, London, pp 357–380

    Google Scholar 

  • Huß VAR, Festl H, Schleifer KH (1983) Studies on the spectrometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 4:184–192

    Google Scholar 

  • Jahnke K-D (1994) A modified method of quantitative colorimetric DNA-DNA hybridization on membrane filters for bacterial identification. J Microbiol Methods 20:237–288

    Article  Google Scholar 

  • Johnson JL (1973) Use of nucleic acid homologies in the taxonomy of anaerobic bacteria. Int J Syst Bacteriol 23:308–315

    Article  CAS  Google Scholar 

  • Johnson JL (1981) Genetic characterization. In: Gerhardt P, Murray RGE, Costilow RN, Nester EW, Wood WA, Krieg NR, Philips GB (eds) Manual of methods for general microbiology. ASM, Washington, D.C., pp 450–472

    Google Scholar 

  • Johnson JL (1985) DNA reassociation and RNA hybridisation of bacterial nucleic acids. Methods Microbiol 18:33–74

    Article  CAS  Google Scholar 

  • Johnson JL (1989) Nucleic acids in bacterial classification. In: Williams ST, Sharpe ME, Holt JG (eds) Bergey’s manual of systematic bacteriology, vol 4. Williams and Wilkins, Baltimore, pp 2306–2309

    Google Scholar 

  • Johnson JL (1991) DNA reassociation experiments. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. Wiley, pp 21–44

    Google Scholar 

  • Jurado V, Láiz L, González JM, Hernández-Marine M, Valens M, Sáiz-Jimenez C (2005) Phyllobacterium catacumbae, sp. nov., a member of the Rhizobiales isolated from roman catacombs. Int J Syst Evol Microbiol (in press)

    Google Scholar 

  • Kaznowski A (1995) A method of colorimetric DNA-DNA hybridization in microplates with covalently immobilized DNA for identification of Aeromonas spp. Med Microbiol Lett 4:362–369

    CAS  Google Scholar 

  • Krieg N (1988) Bacterial classification: an overview. Can J Microbiol 34:536–540

    Article  PubMed  CAS  Google Scholar 

  • Konstantinidis KT, Tiedje JM (2005) Genomic insights to advance the species definition for prokaryotic species. Proc Natl Acad Sci USA, DOI: 10.1073/pnas.0409727102

    Google Scholar 

  • Lind E, Ursing J (1986) Clinical strains of Enterobacter agglomerans (synonyms: Erwinia herbicola, Erwinia mellitiae) identified by DNA-DNA hybridization. Acta Pathol Microbiol Immunol Scand B 94:250–231

    Google Scholar 

  • Mallet J, Willmott K (2003) Taxonomy: renaissance of tower of Babel? Trends Ecol Evol 18:57–59

    Article  Google Scholar 

  • Martínez-Murcia AJ, Benlloch S, Collins MD (1992) Phylogenetic interrelationships of members of the genera Aeromonas and Plesiomonas as determined by 16 s ribosomal DNA sequencing: lack of congruence with results of DNA-DNA hybridizations. Int J Syst Bacteriol 42:412–421

    Article  PubMed  Google Scholar 

  • Mayden RL (1997) A hierarchy of species concepts: the denouement in the saga of the species problem. In: Claridge MF, Dawah HA, Wilson MR (eds.) Species: the units of biodiversity. Chapman & Hall, London, pp 381–421

    Google Scholar 

  • Mayr E (1942) Systematics and the origin of species from the view point of a zoologist. Columbia University, New York

    Google Scholar 

  • Mehlen A, Goeldner M, Ried S, Stindl S, Ludwig W, Schleifer K-H (2004) Development of a fast DNA-DNA hybridization method based on melting profiles in microplates. System Appl Microbiol 27:689–695

    Article  CAS  Google Scholar 

  • Mindell DP, Meyer A (2001) Homology evolving. Trends Ecol Evol 16:434–439

    Article  Google Scholar 

  • Mishler BD, Donoghue MJ (1982) Species concepts: a case for pluralism. Syst Zool 31:491–503

    Article  Google Scholar 

  • Owen RJ, Pitcher D (1985) Current methods for estimating DNA base composition and levels of DNA-DNA hybridization. In: Goodfellow M, Minikin E (eds) Chemical methods in bacterial systematics. Academic, London, pp 67–93

    Google Scholar 

  • Palleroni NJ (2003) Prokaryote taxonomy of the 20th century and the impact of studies on genus Pseudomonas: a personal view. Microbiology 149:1–7

    Article  PubMed  CAS  Google Scholar 

  • Palys T, Nakamura LK, Cohan FM (1997) Discovery and classification of ecological diversity in the bacterial world: the role of DNA sequence data. Int J Syst Bacteriol 47:1145–1156

    Article  PubMed  CAS  Google Scholar 

  • Popoff M, Coynault C (1980) Use of DEAE-cellulose filters in the S1 nuclease method for bacterial deoxyribonucleic acid hybridization. Ann Microbiol 131A:151–155

    CAS  Google Scholar 

  • Ramisse V, Balandreau J, Thibault F, Vidal D, Vergnaud G, Normand P (2003) DNA-DNA hybridization study of Burkholderia species using genomic DNA macro-array analysis coupled to reverse genome probing. Int J Syst Evol Microbiol 53:739–746

    Article  PubMed  CAS  Google Scholar 

  • Ravin AW (1963) Experimental approaches to the study of bacterial phylogeny. Am Nat 97:307–318

    Article  Google Scholar 

  • Reydon TAC (2004) Why does the species problem still persist? Bioessays 26:300–305

    Article  PubMed  Google Scholar 

  • Rosselló R, Garcia-Valdés E, Lalucat J, Ursing J (1991) Genotypic and phenotypic diversity of Pseudomonas stutzeri. System Appl Microbiol 14:150–157

    Google Scholar 

  • Rosselló-Mora R (2003) Opinion: the species problem, can we achieve a universal concept? System Appl Microbiol 26:323–326

    Article  Google Scholar 

  • Rosselló-Mora R, Amann, R (2001) The species concept for prokaryotes. FEMS Microbiol Rev 25:39–67

    Article  PubMed  Google Scholar 

  • Rosselló-Mora R, Kämpfer P (2004) Defining microbial diversity — the species concept for prokaryotic and eukaryotic microorganisms. In: Bull AT (ed) Microbial diversity and bioprospecting. ASM, Washington, D.C., pp 29–39

    Google Scholar 

  • Santos SR, Ochman H (2004) Identification and phylogenetic sorting of bacterial lineages with universally conserved genes and proteins. Environ Microbiol 6:754–759

    Article  PubMed  CAS  Google Scholar 

  • Schildkraut C, Lifson S (1965) Dependence of the melting temperature of DNA on salt concentration. Biopolymers 3:195–208

    Article  PubMed  CAS  Google Scholar 

  • Schildkraut CL, Marmur J, Doty P (1961) The formation of hybrid DNA molecules and their use in studies of DNA homologies. J Mol Biol 3:595–617

    Article  PubMed  CAS  Google Scholar 

  • Schleifer K-H, Stackebrandt E (1983) Molecular systematics of prokaryotes. Annu Rev Microbiol 37:143–187

    Article  PubMed  CAS  Google Scholar 

  • Sneath PHA (1988) The phenetic and cladistic approaches. In: Hawksworth DL (ed) Prospects in systematics. Systematics Association/Clarendon, Oxford, pp 252–273

    Google Scholar 

  • Sneath PHA (1989) Analysis and interpretation of sequence data for bacterial systematics: the view of a numerical taxonomist. System Appl Microbiol 12:15–31

    Google Scholar 

  • Sneath PHA (1992) International code of nomenclature of bacteria, 1990 revision. American Society for Microbiology, Washington, D.C.

    Google Scholar 

  • Stackebrandt E (2003) The richness of prokaryotic diversity: there must be a species some-where. Food Technol Biotechnol 41:17–22

    Google Scholar 

  • Stackebrandt E, Goebel BM (1994) Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849

    Article  CAS  Google Scholar 

  • Stackebrandt E, Liesack W (1993) Nucleic acids and classification. In: Goodfellow M, O’Donnell AG (eds) Handbook of new bacterial systematics. Academic, London, pp 151–194

    Google Scholar 

  • Stackebrandt E, Frederiksen W, Garrity G, Grimont PAD, Kämpfer P, Maiden MCJ, Nesme X, Rosselló-Mora R, Swings J, Trüper HG, Vauterin L, Ward AC, Whitman WB (2002) Report of the ad hoc committee for the re-evaluation of the species definition in bacteriology. Int J Syst Evol Microbiol 52:1043–1047

    Article  PubMed  CAS  Google Scholar 

  • Staley JT (2004) Speciation and bacterial phylospecies. In: Bull AT (ed) Microbial diversity and bioprospecting. ASM, Washington, D.C., pp 40–48

    Google Scholar 

  • Tindall BJ (2002) Prokaryotic systematics: a theoretical overview. Encycl Life Sci 15:244–251

    Google Scholar 

  • Tjernberg I, Ursing J (1989) Clinical strains of Acinetobacter classified by DNA-DNA hybridization. APMIS 97:595–605

    Article  PubMed  CAS  Google Scholar 

  • Tjernberg I, Lindth E, Ursing J (1989) A quantitative bacterial dot method for DNA-DNA hybridization and its correlation to the hydroxyapatite method. Curr Microbiol 18:77–81

    Article  CAS  Google Scholar 

  • Turner, DJ (1996) Thermodynamics of base pairing. Curr Opin Struct Biol 6:299–304

    Article  PubMed  CAS  Google Scholar 

  • Ullman SJ, McCarthy BJ (1973) The relationship between mismatched base pairs and the thermal stability of DNA duplexes. Biochim Biophys Acta 294:416–424

    PubMed  CAS  Google Scholar 

  • Ursing JB, Rosselló-Mora RA, Garcia-Valdes E, Lalucat J (1995) Taxonomic note: a pragmatic approach to the nomenclature of phenotypically similar genomic groups. Int J Syst Bacteriol 45:604

    Article  Google Scholar 

  • Vandamme P, Pot B, Gillis M, De Vos P, Kersters K, Swings J (1996) Polyphasic taxonomy, a consensus approach to bacterial systematics. Microbiol Rev 60:407–438

    PubMed  CAS  Google Scholar 

  • Watanabe T, Murata Y, Oka S, Iwahashi H (2004) A new approach to species determination for yeast strains: DNA micro array-based comparative genomic hybridization using a yeast DNA microarray with 6000 genes. Yeast 21:351–365

    Article  PubMed  CAS  Google Scholar 

  • Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O, Krichevsky MI, Moore LH, Moore WEC, Murray RGE, Stackebrandt E, Starr MP, Trüper HG (1987) Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464

    Article  Google Scholar 

  • Whitman WB, Coleman DC, Wiebe WJ (1998) Prokaryotes: the unseen majority. Proc Natl Acad Sci USA 95:6578–6583

    Article  PubMed  CAS  Google Scholar 

  • Young JPW (1998) Bacterial evolution and the nature of species. In: Carvalho GR (ed) Advances in molecular ecology. IOS, Amsterdam, pp 119–131

    Google Scholar 

  • Young JM (2001) Implications of alternative classifications and horizontal gene transfer for bacterial taxonomy. Int J Syst Evol Microbiol 51:945–953

    PubMed  CAS  Google Scholar 

  • Zeigler DR (2003) Gene sequences useful for predicting relatedness of whole genomes in bacteria. Int J Syst Evol Microbiol 53:1893–1900

    Article  PubMed  CAS  Google Scholar 

  • Ziemke F, Höfle MG, Lalucat J, Rosselló-Mora R (1998) Reclassification of Shewanella putrefaciens Owen’s genomic group II as Shewanella baltica sp. Nov. Int J Syst Bacteriol 48:179–186

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rosselló-Mora, R. (2006). DNA-DNA Reassociation Methods Applied to Microbial Taxonomy and Their Critical Evaluation. In: Stackebrandt, E. (eds) Molecular Identification, Systematics, and Population Structure of Prokaryotes. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-31292-5_2

Download citation

Publish with us

Policies and ethics