Skip to main content

Astrocytic Tumors

  • Chapter
Gliomas

Part of the book series: Recent Results in Cancer Research ((RECENTCANCER,volume 171))

Astrocytic gliomas are the most common primary brain tumors and account for up to two thirds of all tumors of glial origin. In this review we outline the basic histological and epidemiological aspects of the different astrocytoma subtypes in adults. In addition, we summarize the key genetic alterations that have been attributed to astrocytoma patho-genesis and progression. Recent progress has been made by interpreting genetic alterations in a pathway-related context so that they can be directly targeted by the application of specific inhibitors. Also, the first steps have been taken in refining classical histopathological diagnosis by use of molecular predictive markers, for example, MGMT promoter hypermethylation in glioblastomas. Progress in this direction will be additionally accelerated by the employment of high-throughput profiling techniques, such as array-CGH and gene expression profiling. Finally, the tumor stem cell hypothesis has chal lenged our way of understanding astrocytoma biology by emphasizing intratumoral heteroge neity. Novel animal models will provide us with the opportunity to comprehensively study this multilayered disease and explore novel thera peutic approaches in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Actor B, Cobbers JM, Buschges R et al. (2002) Comprehensive analysis of genomic alterations in gliosarcoma and its two tissue components. Genes Chromosomes Cancer 34:416–427

    Article  PubMed  CAS  Google Scholar 

  • Bailey P, Cushing H (1926) A classification of tumors of the glioma group on a histogenetic basis with a correlated study of prognosis. Lippincott, Philadelphia

    Google Scholar 

  • Balss J, Meyer J, Mueller W et al. (2008) Analysis of the IDH1 codon 132 mutation in brain tumors. Acta Neuropathol 116:597–602.

    Article  PubMed  CAS  Google Scholar 

  • Bao S, Wu Q, McLendon RE et al. (2006) Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 444:756–760

    Article  PubMed  CAS  Google Scholar 

  • Begemann M, Fuller GN, Holland EC (2002) Genetic modeling of glioma formation in mice. Brain Pathol 12:117–32

    PubMed  CAS  Google Scholar 

  • Beier D, Hau P, Proescholdt M et al. (2007) CD133(+) and CD133(−) glioblastoma-derived cancer stem cells show differential growth characteristics and molecular profiles. Cancer Res 67:4010–4015

    Article  PubMed  CAS  Google Scholar 

  • Bell DW, Lynch TJ, Haserlat SM et al. (2005) Epidermal growth factor receptor mutations and gene amplification in non-small-cell lung can cer: molecular analysis of the IDEAL/INTACT gefitinib trials. J Clin Oncol 23:8081–8092

    Article  PubMed  CAS  Google Scholar 

  • Bigner SH, Vogelstein B (1990) Cytogenetics and molecular genetics of malignant gliomas and medulloblastoma. Brain Pathol 1:12–18

    Article  PubMed  CAS  Google Scholar 

  • Bjornsti MA, Houghton PJ (2004) The TOR path way: a target for cancer therapy. Nat Rev Cancer 4:335–348

    Article  PubMed  CAS  Google Scholar 

  • Cancer Genome Atlas Research Network (2008) Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 455:1061–1068.

    Article  CAS  Google Scholar 

  • CBTRUS (2005) Statistical Report: Primary Brain Tumors in the United States, 1998–2002. Published by the Central Brain Tumor Registry of the United States

    Google Scholar 

  • Chan JA, Zhang H, Roberts PS et al. (2004) Pathogenesis of tuberous sclerosis subependymal giant cell astrocytomas: biallelic inactivation of TSC1 or TSC2 leads to mTOR activation. J Neuropathol Exp Neurol 63:1236–1242

    PubMed  CAS  Google Scholar 

  • Choi HS, Wang Z, Richmond W et al. (2006a) Design and synthesis of 7H-pyrrolo[2,3-d]pyri-midines as focal adhesion kinase inhibitors. Part 2. Bioorg Med Chem Lett 16:2689–2692

    Article  CAS  Google Scholar 

  • Choi HS, Wang Z, Richmond W et al. (2006b) Design and synthesis of 7H-pyrrolo[2,3-d]pyri-midines as focal adhesion kinase inhibitors. Part 1. Bioorg Med Chem Lett 16:2173–2176

    Article  CAS  Google Scholar 

  • Ekstrand AJ, James CD, Cavenee WK et al. (1991) Genes for epidermal growth factor receptor, transforming growth factor alpha, and epidermal growth factor and their expression in human gli-omas in vivo. Cancer Res 51:2164–2172

    PubMed  CAS  Google Scholar 

  • Eskens FA, Dumez H, Hoekstra R et al. (2003) Phase I and pharmacokinetic study of continuous twice weekly intravenous administration of Cilengitide (EMD 121974), a novel inhibitor of the integrins alphavbeta3 and alphavbeta5 in patients with advanced solid tumours. Eur J Cancer 39:917–926

    Article  PubMed  CAS  Google Scholar 

  • Esteller M, Garcia-Foncillas J, Andion E et al. (2000) Inactivation of the DNA-repair gene MGMT and the clinical response of gliomas to alkylating agents. N Engl J Med 343:1350–1354

    Article  PubMed  CAS  Google Scholar 

  • Faury D, Nantel A, Dunn SE et al. (2007) Molecular profiling identifies prognostic subgroups of pediat-ric glioblastoma and shows increased YB-1 expres sion in tumors. J Clin Oncol 25:1196–1208

    Article  PubMed  CAS  Google Scholar 

  • Fleming T P, Saxena A, Clark WC et al. (1992) Amplification and/or overexpression of platelet-derived growth factor receptors and epidermal growth factor receptor in human glial tumors. Cancer Res 52:4550–4553

    PubMed  CAS  Google Scholar 

  • Friedlander DR, Zagzag D, Shiff B et al. (1996) Migration of brain tumor cells on extracellular matrix proteins in vitro correlates with tumor type and grade and involves alphaV and beta1 integrins. Cancer Res 56:1939–1947

    PubMed  CAS  Google Scholar 

  • Galanis E, Buckner JC, Maurer MJ et al. (2005) Phase II trial of temsirolimus (CCI-779) in recurrent glioblastoma multiforme: a North Central Cancer Treatment Group Study. J Clin Oncol 23:5294–5304

    Article  PubMed  CAS  Google Scholar 

  • Gerson SL (2004) MGMT: its role in cancer aetiol ogy and cancer therapeutics. Nat Rev Cancer 4:296–307

    Article  PubMed  CAS  Google Scholar 

  • Giannini C, Scheithauer B W, Burger PC et al. (1999) Pleomorphic xanthoastrocytoma: what do we really know about it? Cancer 85:2033–2045

    PubMed  CAS  Google Scholar 

  • Giannini C, Hebrink D, Scheithauer B W, Dei Tos AP and James CD (2001) Analysis of p53 mutation and expression in pleomorphic xanthoastrocy-toma. Neurogenetics 3:159–162

    Article  PubMed  CAS  Google Scholar 

  • Giannini C, Paulus W, Louis DN, Liberski P (2007) Pleomorphic xanthoastrocytoma. p.22ff. In: Louis DN, Ohgaki H, Wiestler OD, and Cavenee WK (2007) WHO Classification of Tumours of the Central Nervous System, 3rd edition. IARC Press, Lyon, France

    Google Scholar 

  • Goldbrunner RH, Haugland HK, Klein CE et al. (1996) ECM dependent and integrin mediated tumor cell migration of human glioma and melanoma cell lines under serum-free conditions. Anticancer Res 16:3679–3687

    PubMed  CAS  Google Scholar 

  • Greig NH, Ries LG, Yancik R, Rapoport SI (1990) Increasing annual incidence of primary malignant brain tumors in the elderly. J Natl Cancer Inst 82:1621–1624

    Article  PubMed  CAS  Google Scholar 

  • Guha A, Mukherjee J (2004) Advances in the biology of astrocytomas. Curr Opin Neurol 17:655–662

    Article  PubMed  Google Scholar 

  • Gutmann DH, Baker SJ, Giovannini M, Garbow J, Weiss W (2003) Mouse models of human cancer consortium symposium on nervous system tumors. Cancer Res 63:3001–3004

    PubMed  CAS  Google Scholar 

  • He J, Olson JJ, James CD (1995) Lack of p16INK4 or retinoblastoma protein (pRb), or amplification-associated overexpression of cdk4 is observed in distinct subsets of malignant glial tumors and cell lines. Cancer Res 55:4833–4836

    PubMed  CAS  Google Scholar 

  • Hegi ME, Diserens AC, Gorlia T et al. (2005) MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med 352:997–1003

    Article  PubMed  CAS  Google Scholar 

  • Hermanson M, Funa K, Hartman M et al. (1992) Platelet-derived growth factor and its receptors in human glioma tissue: expression of messenger RNA and protein suggests the presence of autocrine and paracrine loops. Cancer Res 52:3213–3219

    PubMed  CAS  Google Scholar 

  • Herrlinger U, Felsberg J, Kuker W et al. (2002) Gliomatosis cerebri: molecular pathology and clinical course. Ann Neurol 52:390–399

    Article  PubMed  CAS  Google Scholar 

  • Herrlinger U, Rieger J, Koch D et al. (2006) Phase II trial of lomustine plus temozolomide chemotherapy in addition to radiotherapy in newly diagnosed gliob-lastoma: UKT-03. J Clin Oncol 24:4412–4417

    Article  PubMed  Google Scholar 

  • Hesselager G, Holland EC (2003) Using mice to decipher the molecular genetics of brain tumors. Neurosurgery 53:685–694; discussion 695

    Article  PubMed  Google Scholar 

  • Holland EC, Celestino J, Dai C et al. (2000) Combined activation of Ras and Akt in neural progenitors induces glioblastoma formation in mice. Nat Genet 25:55–57

    Article  PubMed  CAS  Google Scholar 

  • Holland EC (2001) Gliomagenesis: genetic alterations and mouse models. Nat Rev Genet 2:120–129

    Article  PubMed  CAS  Google Scholar 

  • Huang YT, Lee LT, Lee P P, Lin YS, Lee MT (2005) Targeting of focal adhesion kinase by flavonoids and small-interfering RNAs reduces tumor cell migration ability. Anticancer Res 25:2017–2025

    PubMed  CAS  Google Scholar 

  • Ichimura K, Schmidt EE, Goike HM, Collins VP (1996) Human glioblastomas with no alterations of the CDKN2A (p16INK4A, MTS1) and CDK4 genes have frequent mutations of the retinoblas-toma gene. Oncogene 13:1065–1072

    PubMed  CAS  Google Scholar 

  • Ichimura K, Bolin MB, Goike HM et al. (2000) Deregulation of the p14ARF/MDM2/p53 pathway is a prerequisite for human astrocytic glio-mas with G1-S transition control gene abnormalities. Cancer Res 60:417–424

    PubMed  CAS  Google Scholar 

  • Jen J, Harper J W, Bigner SH et al. (1994) Deletion of p16 and p15 genes in brain tumors. Cancer Res 54:6353–6358

    PubMed  CAS  Google Scholar 

  • Kaulich K, Blaschke B, Numann A et al. (2002) Genetic alterations commonly found in diffusely infiltrating cerebral gliomas are rare or absent in pleomorphic xanthoastrocytomas. J Neuropathol Exp Neurol 61:1092–1099

    PubMed  CAS  Google Scholar 

  • Kleihues P, Ohgaki H (1999) Primary and secondary glioblastomas: from concept to clinical diagnosis. Neurooncol 1:44–51

    CAS  Google Scholar 

  • Knobbe CB, Merlo A, Reifenberger G (2002) Pten signaling in gliomas. Neurooncol 4:196–211

    CAS  Google Scholar 

  • Knobbe CB, Reifenberger J, Blaschke B, Reifenberger G (2004) Hypermethylation and transcriptional downregulation of the carboxyl-terminal modulator protein gene in glioblasto-mas. J Natl Cancer Inst 96:483–486

    Article  PubMed  CAS  Google Scholar 

  • Kordek R, Biernat W, Alwasiak J et al. (1995) p53 protein and epidermal growth factor receptor expression in human astrocytomas. J Neurooncol 26:11–16

    Article  PubMed  CAS  Google Scholar 

  • Korshunov A, Sycheva R, Golanov A (2006) Genetically distinct and clinically relevant subtypes of glioblastoma defined by array-based comparative genomic hybridization (array-CGH). Acta Neuropathol (Berl) 111:465–474

    Article  CAS  Google Scholar 

  • Kraus JA, Wenghoefer M, Schmidt MC et al. (2000) Long-term survival of glioblastoma multiforme: importance of histopathological reevaluation. J Neurol 247:455–460

    Article  PubMed  CAS  Google Scholar 

  • Krex D, Klink B, Hartmann C et al. (2007) Long-term survival with glioblastoma multiforme. Brain 130:2596–2606

    Article  PubMed  Google Scholar 

  • Kros JM, Zheng P, Dinjens WN, Alers JC (2002) Genetic aberrations in gliomatosis cerebri support monoclonal tumorigenesis. J Neuropathol Exp Neurol 61:806–814

    PubMed  CAS  Google Scholar 

  • Kunitz A, Wolter M, van den Boom J et al. (2007) DNA hypermethylation and Aberrant Expression of the EMP3 Gene at 19q13.3 in Human Gliomas. Brain Pathol 17:363–370

    Article  PubMed  CAS  Google Scholar 

  • Kuratsu J, Takeshima H, Ushio Y (2001) Trends in the incidence of primary intracranial tumors in Kumamoto, Japan. Int J Clin Oncol 6:183–191

    PubMed  CAS  Google Scholar 

  • Lee J, Kotliarova S, Kotliarov Y et al. (2006) Tumor stem cells derived from glioblastomas cultured in bFGF and EGF more closely mirror the pheno-type and genotype of primary tumors than do serum-cultured cell lines. Cancer Cell 9:391–403

    Article  PubMed  CAS  Google Scholar 

  • Legler JM, Ries LA, Smith MA et al. (1999) Cancer surveillance series [corrected]: brain and other central nervous system cancers: recent trends in incidence and mortality. J Natl Cancer Inst 91:1382–1390

    Article  PubMed  CAS  Google Scholar 

  • Lipinski CA, Tran NL, Bay C et al. (2003) Differential role of proline-rich tyrosine kinase 2 and focal adhesion kinase in determining glioblastoma migration and proliferation. Mol Cancer Res 1:323–332

    PubMed  CAS  Google Scholar 

  • Louis DN, Ohgaki H, Wiestler OD, Cavenee WK (2007) WHO Classification of Tumours of the Central Nervous System, 3rd edition. IARC Press, Lyon, France

    Google Scholar 

  • Lynch TJ, Bell DW, Sordella R et al. (2004) Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N Engl J Med 350:2129–2139

    Article  PubMed  CAS  Google Scholar 

  • Mahesparan R, Tysnes BB, Read TA et al. (1999) Extracellular matrix-induced cell migration from glioblastoma biopsy specimens in vitro. Acta Neuropathol (Berl) 97:231–239

    Article  CAS  Google Scholar 

  • Mawrin C (2005) Molecular genetic alterations in gliomatosis cerebri: what can we learn about the origin and course of the disease? Acta Neuropathol (Berl) 110:527–536

    Article  CAS  Google Scholar 

  • Mellinghoff IK, Wang M Y, Vivanco I et al. (2005) Molecular determinants of the response of gliob-lastomas to EGFR kinase inhibitors. N Engl J Med 353:2012–2024

    Article  PubMed  CAS  Google Scholar 

  • Meyer-Puttlitz B, Hayashi Y, Waha A et al. (1997) Molecular genetic analysis of giant cell glioblas-tomas. Am J Pathol 151:853–857

    PubMed  CAS  Google Scholar 

  • Miller CR, Dunham C P, Scheithauer B W, Perry A (2006) Significance of necrosis in grading of oli-godendroglial neoplasms: a clinicopathologic and genetic study of newly diagnosed high-grade gliomas. J Clin Oncol 24:5419–5426

    Article  PubMed  Google Scholar 

  • Miller CR, Perry A (2007) Glioblastoma. Arch Pathol Lab Med 131:397–406

    PubMed  Google Scholar 

  • Nakamura M, Watanabe T, Klangby U et al. (2001) p14ARF deletion and methylation in genetic pathways to glioblastomas. Brain Pathol 11:159–168

    PubMed  CAS  Google Scholar 

  • Nutt CL, Mani DR, Betensky RA et al. (2003) Gene expression-based classification of malignant gli-omas correlates better with survival than histo-logical classification. Cancer Res 63:1602–1607

    PubMed  CAS  Google Scholar 

  • Ohgaki H, Kleihues P (2005) Epidemiology and etiology of gliomas. Acta Neuropathol (Berl) 109:93–108

    Article  Google Scholar 

  • Ohgaki H, Kleihues P (2007) Genetic pathways to primary and secondary glioblastoma. Am J Pathol 170:1445–1453

    Article  PubMed  CAS  Google Scholar 

  • Parsons DW, Jones S, Zhang X et al. (2008) An integrated genomic analysis of human glioblastoma multiforme. Science 321:1807–1812.

    Article  PubMed  CAS  Google Scholar 

  • Pelloski CE, Ballman K V, Furth AF et al. (2007) Epidermal growth factor receptor variant III status defines clinically distinct subtypes of gliob-lastoma. J Clin Oncol 25:2288–2294

    Article  PubMed  CAS  Google Scholar 

  • Peraud A, Ansari H, Bise K, Reulen HJ (1998) Clinical outcome of supratentorial astrocytoma WHO grade II. Acta Neurochir (Wien) 140:1213–1222

    Article  CAS  Google Scholar 

  • Peraud A, Watanabe K, Schwechheimer K et al. (1999) Genetic profile of the giant cell glioblas-toma. Lab Invest 79:123–129

    PubMed  CAS  Google Scholar 

  • Phillips HS, Kharbanda S, Chen R et al. (2006) Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogene-sis. Cancer Cell 9:157–173

    Article  PubMed  CAS  Google Scholar 

  • Pomerantz J, Schreiber-Agus N, Liegeois NJ et al. (1998) The Ink4a tumor suppressor gene product, p19Arf, interacts with MDM2 and neutralizes MDM2's inhibition of p53. Cell 92:713–723

    Article  PubMed  CAS  Google Scholar 

  • Prives C, Hall PA (1999) The p53 pathway. J Pathol 187:112–126

    Article  PubMed  CAS  Google Scholar 

  • Quelle DE, Zindy F, Ashmun RA, Sherr CJ (1995) Alternative reading frames of the INK4a tumor suppressor gene encode two unrelated proteins capable of inducing cell cycle arrest. Cell 83:993–1000

    Article  PubMed  CAS  Google Scholar 

  • Rao JS (2003) Molecular mechanisms of glioma invasiveness: the role of proteases. Nat Rev Cancer 3:489–501

    Article  PubMed  CAS  Google Scholar 

  • Rao RD, James CD (2004) Altered molecular pathways in gliomas: an overview of clinically relevant issues. Semin Oncol 31:595–604

    Article  PubMed  CAS  Google Scholar 

  • Reifenberger G, Collins VP (2004) Pathology and molecular genetics of astrocytic gliomas. J Mol Med 82:656–670

    Article  PubMed  CAS  Google Scholar 

  • Reifenberger G, Reifenberger J, Ichimura K, Meltzer PS, Collins VP (1994) Amplification of multiple genes from chromosomal region 12q13–14 in human malignant gliomas: preliminary mapping of the amplicons shows preferential involvement of CDK4, SAS, and MDM2. Cancer Res 54:4299–4303

    PubMed  CAS  Google Scholar 

  • Reifenberger G, Ichimura K, Reifenberger J et al. (1996) Refined mapping of 12q13-q15 ampli-cons in human malignant gliomas suggests CDK4/SAS and MDM2 as independent amplification targets. Cancer Res 56:5141–5145

    PubMed  CAS  Google Scholar 

  • Reifenberger G, Kaulich K, Wiestler OD, Blumcke I (2003) Expression of the CD34 antigen in pleomorphic xanthoastrocytomas. Acta Neuro-pathol (Berl) 105:358–364

    CAS  Google Scholar 

  • Reilly KM, Jacks T (2001) Genetically engineered mouse models of astrocytoma: GEMs in the rough? Semin Cancer Biol 11:177–191

    Article  PubMed  CAS  Google Scholar 

  • Reis RM, Konu-Lebleblicioglu D, Lopes JM, Kleihues P, Ohgaki H (2000) Genetic profile of gliosarcomas. Am J Pathol 156:425–432

    PubMed  CAS  Google Scholar 

  • Rich JN, Bigner DD (2004) Development of novel targeted therapies in the treatment of malignant glioma. Nat Rev Drug Discov 3:430–446

    Article  PubMed  CAS  Google Scholar 

  • Rickert CH, Paulus W (2002) No chromosomal imbalances detected by comparative genomic hybridisation in subependymal giant cell astro-cytomas. Acta Neuropathol (Berl) 104:206–208

    Article  CAS  Google Scholar 

  • Riemenschneider MJ, Buschges R, Wolter M et al. (1999) Amplification and overexpression of the MDM4 (MDMX) gene from 1q32 in a subset of malignant gliomas without TP53 mutation or MDM2 amplification. Cancer Res 59:6091–6096

    PubMed  CAS  Google Scholar 

  • Riemenschneider MJ, Knobbe CB, Reifenberger G (2003) Refined mapping of 1q32 amplicons in malignant gliomas confirms MDM4 as the main amplification target. Int J Cancer 104:752–757

    Article  PubMed  CAS  Google Scholar 

  • Riemenschneider MJ, Mueller W, Betensky RA, Mohapatra G, Louis DN (2005) In situ analysis of integrin and growth factor receptor signaling pathways in human glioblastomas suggests overlapping relationships with focal adhesion kinase activation. Am J Pathol 167:1379–1387

    PubMed  CAS  Google Scholar 

  • Riemenschneider MJ, Betensky RA, Pasedag SM, Louis DN (2006) AKT activation in human gliob-lastomas enhances proliferation via TSC2 and S6 kinase signaling. Cancer Res 66:5618–5623

    Article  PubMed  CAS  Google Scholar 

  • Roerig P, Nessling M, Radlwimmer B et al. (2005) Molecular classification of human gliomas using matrix-based comparative genomic hybridization. Int J Cancer 117:95–103

    Article  PubMed  CAS  Google Scholar 

  • Salhia B, Tran NL, Symons M et al. (2006) Molecular pathways triggering glioma cell invasion. Expert Rev Mol Diagn 6:613–626

    Article  PubMed  CAS  Google Scholar 

  • Schiffer D, Chio A, Giordana MT, Leone M, Soffietti R (1988) Prognostic value of histologic factors in adult cerebral astrocytoma. Cancer 61:1386–1393

    Article  PubMed  CAS  Google Scholar 

  • Schmidt EE, Ichimura K, Reifenberger G, Collins VP (1994) CDKN2 (p16/MTS1) gene deletion or CDK4 amplification occurs in the majority of glioblastomas. Cancer Res 54:6321–6324

    PubMed  CAS  Google Scholar 

  • Schmidt EE, Ichimura K, Messerle KR, Goike HM, Collins VP (1997) Infrequent methylation of CDKN2A(MTS1/p16) and rare mutation of both CDKN2A and CDKN2B(MTS2/p15) in primary astrocytic tumours. Br J Cancer 75:2–8

    PubMed  CAS  Google Scholar 

  • Singh K, Sun S, Vezina C (1979) Rapamycin ( AY-22,989), a new antifungal antibiotic. I V. Mechanism of action. J Antibiot (Tokyo) 32:630–645

    CAS  Google Scholar 

  • Singh SK, Hawkins C, Clarke ID et al. (2004) Identification of human brain tumour initiating cells. Nature 432:396–401

    Article  PubMed  CAS  Google Scholar 

  • Smith JS, Tachibana I, Passe SM et al. (2001) PTEN mutation, EGFR amplification, and outcome in patients with anaplastic astrocytoma and glioblastoma multiforme. J Natl Cancer Inst 93:1246–1256

    Article  PubMed  CAS  Google Scholar 

  • Tihan T, Fisher PG, Kepner JL et al. (1999) Pediatric astrocytomas with monomorphous pilomyxoid features and a less favorable outcome. J Neuropathol Exp Neurol 58:1061–1068

    Article  PubMed  CAS  Google Scholar 

  • Uhrbom L, Dai C, Celestino JC et al. (2002) Ink4a-Arf loss cooperates with KRas activation in astrocytes and neural progenitors to generate glioblastomas of various morphologies depending on activated Akt. Cancer Res 62:5551–5558

    PubMed  CAS  Google Scholar 

  • Vescovi AL, Galli R, Reynolds BA (2006) Brain tumour stem cells. Nat Rev Cancer 6:425–436

    Article  PubMed  CAS  Google Scholar 

  • Waha A, Guntner S, Huang TH et al. (2005) Epigenetic silencing of the protocadherin family member PCDH-gamma-A11 in astrocytomas. Neoplasia 7:193–199

    Article  PubMed  CAS  Google Scholar 

  • Watanabe K, Sato K, Biernat W et al. (1997) Incidence and timing of p53 mutations during astrocytoma progression in patients with multiple biopsies. Clin Cancer Res 3:523–530

    PubMed  CAS  Google Scholar 

  • Watanabe K, Peraud A, Gratas C et al. (1998) p53 and PTEN gene mutations in gemistocytic astro-cytomas. Acta Neuropathol (Berl) 95:559–564

    Article  CAS  Google Scholar 

  • Watanabe T, Katayama Y, Yoshino A et al. (2007) Aberrant hypermethylation of p14ARF and O6-methylguanine-DNA methyltransferase genes in astrocytoma progression. Brain Pathol 17:5–10

    Article  PubMed  CAS  Google Scholar 

  • Weber RG, Hoischen A, Ehrler M et al. (2006) Frequent loss of chromosome 9, homozygous CDKN2A/p14(ARF)/CDKN2B deletion and low TSC1 mRNA expression in pleomorphic xan-thoastrocytomas. Oncogene

    Google Scholar 

  • Weiss WA, Israel M, Cobbs C et al. (2002) Neuropathology of genetically engineered mice: consensus report and recommendations from an international forum. Oncogene 21:7453–7463

    Article  PubMed  CAS  Google Scholar 

  • Wikstrand CJ, Reist CJ, Archer GE, Zalutsky MR, Bigner DD (1998) The class III variant of the epidermal growth factor receptor (EGFRvIII): characterization and utilization as an immuno-therapeutic target. J Neurovirol 4:148–158

    Article  PubMed  CAS  Google Scholar 

  • Xiao A, Wu H, Pandolfi P P, Louis DN, Van Dyke T (2002) Astrocyte inactivation of the pRb pathway predisposes mice to malignant astrocytoma development that is accelerated by PTEN mutation. Cancer Cell 1:157–168

    Article  PubMed  CAS  Google Scholar 

  • Zhu Y, Guignard F, Zhao D et al. (2005) Early inac-tivation of p53 tumor suppressor gene cooperating with NF1 loss induces malignant astrocytoma. Cancer Cell 8:119–130

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus J. Riemenschneider .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Riemenschneider, M.J., Reifenberger, G. (2009). Astrocytic Tumors. In: von Deimling, A. (eds) Gliomas. Recent Results in Cancer Research, vol 171. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-31206-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-31206-2_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-31205-5

  • Online ISBN: 978-3-540-31206-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics