Skip to main content

Part of the book series: Bolyai Society Mathematical Studies ((BSMS,volume 14))

  • 1429 Accesses

Abstract

What is interpolation? “Perhaps it would be interesting to dig to the roots of the theory and to indicate its historical origin. Newton, who wanted to draw conclusions from the observed location of comets at equidistant times as to their location at arbitrary times arrived at the problem of determining a ‘geometric’ curve passing through arbitrarily many given points. He solved this problem by the interpolation polynomial bearing his name” (Pál Tuán {128, p. 23}.)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Freud, Géza, Orthogonale Polynome, Akadémiai Kiadó (Budapest), Birkhäuser (Basel, 1969). Orthogonal Polynomials, Pergamon Press (London-Toronto-New York, 1971).

    MATH  Google Scholar 

  2. Szegö, Gábor, Orthogonal Polynomials, American Mathematical Society Colloquium Publications, Vol. XXIII., 1939, revised 1959, 3rd edition 1967, 4th edition 1975.

    Google Scholar 

  3. R. Askey, Mean convergence of orthogonal series and Lagrange interpolation, Acta Math. Acad. Sci. Hungar., 23 (1972), 71–85.

    Article  MATH  MathSciNet  Google Scholar 

  4. N. S. Baiguzov, Some estimates for the dérivátes of algebraic polynomials and an application to numerical differentiation, Mat. Zametki, 5 (1969), 183–194 (in Russian).

    MathSciNet  Google Scholar 

  5. J. Balázs and P. Tuán, Notes on interpolation, II, Acta Math. Acad. Sci. Hungar., 8 (1957), 201–215.

    Article  MATH  MathSciNet  Google Scholar 

  6. J. Balázs and P. Tuán, Notes on interpolation, III, Acta Math. Acad. Sci. Hungar., 9 (1958), 195–214.

    Article  MATH  MathSciNet  Google Scholar 

  7. J. Balázs, On the convergence of Hermite-Fejér interpolation process, Acta Math. Acad. Sci. Hungar., 9 (1958), 259–267.

    Article  MathSciNet  Google Scholar 

  8. J. Balázs, Weighted (0,2) interpolation on the ultrasherical nodes, MTA III. Osztálya Közl, 11(3) (1961), 305–338.

    MATH  Google Scholar 

  9. D. L. Berman, On some linear operators, Dokl. Akad. Nauk SSSR., 73 (1950), 249–252 (Russian).

    MATH  Google Scholar 

  10. L. Brutman and A. Pinkus, On the Erdös conjecture concerning minimal norm interpolation on the unit circle, SIAM J. Numer. Anal., 17 (1980), 373–375.

    Article  MATH  MathSciNet  Google Scholar 

  11. L. Brutman and A. Pinkus, On the Erdös conjecture concerning minimal norm interpolation on the unit circle, SIAM J. Numer. Anal., 17 (1980), 373–375.

    Article  MATH  MathSciNet  Google Scholar 

  12. L. Brutman, Lebesgue functions for polynomial interpolation. A survey, Ann. of Numer. Math., 4 (1997), 111–127.

    MATH  MathSciNet  Google Scholar 

  13. A. S. Cavaretta, Jr., A. Sharma and R. S. Varga, Hermite Birkhoff interpolation in the n-th roots of unity, Trans. Amer. Math. Soc., 259 (1980), 621–628.

    Article  MATH  MathSciNet  Google Scholar 

  14. A. M. Chak, A. Sharma and J. Szabados, On a problem of P. Tuán, Studia Sci. Math. Hungar., 15 (1980), 441–455.

    MATH  MathSciNet  Google Scholar 

  15. S. Damelin, The Lebesgue function and Lebesgue constant of Lagrange interpolation for Erdös weights, J. Approx. Theory, to appear.

    Google Scholar 

  16. C. de Boor and A. Pinkus, Proof of the conjectures of Bernstein and Erdös concerning the optimal nodes for polynomial interpolation, J. Approx. Theory, 24 (1978), 289–303.

    Article  MATH  MathSciNet  Google Scholar 

  17. B. della Vecchia, Direct and converse results by rational operators, Constr. Approx., 12 (1996), 271–285.

    Article  MATH  MathSciNet  Google Scholar 

  18. B. della Vecchia, G. Mastroianni and P. Vértesi, One-sided convergence of Lagrange interpolation based on generalized Jacobi weights, to appear.

    Google Scholar 

  19. E. Egerváry and P. Tuán, Notes on interpolation, V., Acta Math. Acad. Sci. Hungar., 9 (1958), 259–267.

    Article  MATH  MathSciNet  Google Scholar 

  20. S. A. N. Eneduanya, On the convergence of interpolation polynomials, Anal Math., 11 (1985), 13–22.

    Article  MATH  MathSciNet  Google Scholar 

  21. P. Erdös and E. Feldheim, Sur le mode de convergence pour l’interpolation de Lagrange, C. R. Acad. Sci. Paris, 203 (1936), 913–915.

    Google Scholar 

  22. P. Erdös and G. Grünwald, Über die aritmetischen Mittelwerte der Lagrangeschen Interpolationspolynome, Studia Math., 7 (1938), 82–95.

    MATH  Google Scholar 

  23. P. Erdös and G. Grünwald, Über einen Faber’sehen Satz, Ann. Math., 39 (1938), 257–261.

    Article  Google Scholar 

  24. P. Erdös and G. Halász, On the arithmetic means of Lagrange interpolation, in: Approximation Theory (J. Szabados, K. Tandori, eds.), Colloq. Math. Soc. J. Bolyai, 58 (1991), pp. 263–274.

    Google Scholar 

  25. P. Erdös and J. Szabados, On the integral of the Lebesgue function of interpolation, Acta Math. Acad. Sci. Hungar., 32 (1978), 191–195.

    Article  MATH  MathSciNet  Google Scholar 

  26. P. Erdös and P. Tuán, An extremal problem in the theory of interpolation, Acta Math. Acad. Sci. Hungar., 12 (1961), 221–234.

    Article  MATH  MathSciNet  Google Scholar 

  27. P. Erdös and P. Tuán, On interpolation, I.Quadrature and mean convergence in the Lagrange interpolation, Ann.of Math., 38 (1937), 142–155.

    Article  MathSciNet  Google Scholar 

  28. P. Erdös and P. Tuán, On interpolation, III., Ann. of Math., 41 (1940), 510–553.

    Article  MathSciNet  Google Scholar 

  29. P. Erdös and P. Tuán, On the role of the Lebesgue function the theory of Lagrange interpolation, Acta Math. Acad. Sci. Hungar., 6 (1955), 47–66.

    Article  MATH  MathSciNet  Google Scholar 

  30. P. Erdös and P. Vértesi, Correction of some misprints in our paper: “On the almost everywhere divergence of Lagrange interpolation polynomials for arbitrary systems of nodes” [Acta Math. Acad. Sci. Hungar., 36, no. 1–2 (1980), 71–89, Acta Math. Acad. Sci. Hungar. 38 (1981), 263.

    Article  MATH  MathSciNet  Google Scholar 

  31. P. Erdös and P. Vértesi, On the almost everywhere divergence of Lagrange interpolation of polynomials for arbitrary systems of nodes, Acta Math. Acad. Sci. Hungar., 36 (1980), 71–89.

    Article  MATH  MathSciNet  Google Scholar 

  32. P. Erdös and P. Vértesi, On the almost everywhere divergence of Lagrange interpolation, in: Approximation and Function Spaces (Gdańsk, 1979), North-Holland (Amsterdam-New York, 1981), pp. 270–278.

    Google Scholar 

  33. P. Erdös and P. Vértesi, On the Lebesgue function of interpolation, in: Functional Analysis and Approximation (P. L. Butzer, B. Sz.-Nagy, E. Görlich, eds.), ISNM, 60, Birkhäuser (1981), pp. 299–309.

    Google Scholar 

  34. P. Erdös, A. Kroó and J. Szabados, On convergent interpolatory polynomials, J. Approx. Theory, 58 (1989), 232–241.

    Article  MATH  MathSciNet  Google Scholar 

  35. P. Erdös, J. Szabados and P. Vértesi, On the integral of Lebesgue function of interpolation. II, Acta Math. Hungar., 68 (1995), 1–6.

    Article  MATH  MathSciNet  Google Scholar 

  36. P. Erdös, J. Szabados, A. K. Varma and P. Vértesi, On an interpolation theoretical extremal problem, Studia Sci. Math. Hungar., 29 (1994), 55–60.

    MATH  MathSciNet  Google Scholar 

  37. P. Erdös, On some convergence properties in the interpolation polynomials, Ann.of Math., 44 (1943), 330–337.

    Article  MathSciNet  Google Scholar 

  38. P. Erdös, Problems and results on the theory of interpolation, I, Acta Math. Acad. Sci. Hungar., 9 (1958), 381–388.

    Article  MATH  MathSciNet  Google Scholar 

  39. P. Erdös, Problems and results on the theory of interpolation, I, Acta Math. Acad. Sci. Hungar., 9 (1958), 381–388.

    Article  MATH  MathSciNet  Google Scholar 

  40. P. Erdös, Problems and results on the theory of interpolation, II, Acta Math. Acad. Sci. Hungar., 12 (1961), 235–244.

    Article  MATH  MathSciNet  Google Scholar 

  41. P. Erdös, Some theorems and remarks on interpolation, Acta Sci. Math. (Szeged), 12 (1950), 11–17.

    MathSciNet  Google Scholar 

  42. G. Faber, Über die interpolatorische Darstellung steiger Funktionen, Jahresber. der Deutschen Math. Verein., 23 (1914), 190–210.

    Google Scholar 

  43. L. Fejér, Über Interpolation, Göttinger Nachrichten (1916), 66–91.

    Google Scholar 

  44. L. Fejér, Interpolation und konforme Abbildung, Gött. Nachr. (1918), 319–331.

    Google Scholar 

  45. L. Fejér, Interpolation-röl (elsö közlemeny), Mat. és Term. Értesító, 34 (1916), 209–229.

    Google Scholar 

  46. L. Fejér, Lagrangesche interpolation und die zugehörigen konjugierten Punkte, Math. Ann., 106 (1932), 1–55.

    Article  MathSciNet  Google Scholar 

  47. L. Fejér, Lebeguesche Konstanten und divergente Fourierreihen, J. Reine Angew, Math., 138 (1910), 22–53.

    MATH  Google Scholar 

  48. L. Fejér, On the characterization of some remarkable systems point of interpolation by means of conjugate points, American Math. Monthly, 41 (1934), 1–14.

    Article  Google Scholar 

  49. L. Fejér, Sur les fonctions bornées et integrables, C. R. Acad. Sci. Paris, 131 (1900), 984–987.

    Google Scholar 

  50. E. Feldheim, Sur le mode de convergence dans l’interpolation de Lagrange, Dokl. Nauk. USSR, 14 (1937), 327–331.

    Google Scholar 

  51. E. Feldheim, Théorie de la convergence des procédés d’interpolation et de quadrature mécanique, Mémorial des Sciences Mathématiques, 95 (1939), 1–9, Paris, Gauthier-Villars.

    Google Scholar 

  52. G. Freud, Bemarkung über die Konvergenz eines interpolations verfahren von P. Tuán, Acta Math. Acad. Sci. Hungar., 9 (1958), 337–341.

    Article  MATH  MathSciNet  Google Scholar 

  53. D. Gaier, Lectures on Complex Approximation, Birkhäuser (1987), pp. 196+IX.

    Google Scholar 

  54. H. H. Gonska and H.-B. Knoop, On Hermite-Fejér Interpolation; A Biography (1914–1987), Studia Sci. Math. Hungar., 25 (1990), 147–198.

    MathSciNet  Google Scholar 

  55. G. Grünwald, Über Divergenzerscheinungen der Lagrangeschen Interpolationspoly-nome stetiger Funktionen, Ann. Math., 37 (1936), 908–918.

    Article  Google Scholar 

  56. G. Grünwald, Über Divergenzerscheinungen der Lagrangeschen Interpolationspoly-nome, Acta Sci. Math. (Szeged), 7 (1935), 207–221.

    Google Scholar 

  57. G. Grünwald, On the theory of interpolation, Acta Math., 75 (1942), 219–245.

    Article  Google Scholar 

  58. G. Halász, On projections into the space of trigonometric polynomials, Acta Sci. Math. (Szeged), 57 (1993), 353–366.

    MATH  MathSciNet  Google Scholar 

  59. G. Halász, The “coarse and fine theory of interpolation” of Erdös and Tuán in a boarder view, Constr. Approx., 8 (1992), 169–185.

    Article  MATH  MathSciNet  Google Scholar 

  60. D. Jackson, A formula of trigonometric interpolation, Rendiconti der circolo matematico di Palermo, 37 (1914), 371–375.

    Article  Google Scholar 

  61. I. Joó, On Pál interpolation, Ann. Univ. Sci. Budapest. Sect. Math., 37 (1994), 247–262.

    MATH  Google Scholar 

  62. I. Joö and V. E. S. Szabó, A generalization of Pál interpolation process, Acta Sci. Math. (Szeged), 60 (1995), 429–438.

    MathSciNet  Google Scholar 

  63. A. Kalmár, Az interpolációról, Math, és Phys. Lapok, 33 (1926), 120–149 (in Hungarian).

    Google Scholar 

  64. T. A. Kilgore, A characterization of the Lagrange interpolating projection with minimal Tchebycheff norm, J. Approx. Theory, 24 (1978), 273–288.

    Article  MATH  MathSciNet  Google Scholar 

  65. O. Kis and J. Szabados, On the convergence of Lagrange interpolation, Acta Math. Acad. Sci. Hungar., 16 (1965), 389–430 (in Russian).

    Article  MATH  MathSciNet  Google Scholar 

  66. O. Kis, Convergence of interpolation in some function spaces, MTA Mat. Kut. Int. Közl., 7 (1962), 95–111 (Russian).

    MATH  MathSciNet  Google Scholar 

  67. O. Kis, On certain interpolatory processes, II, Acta Math. Acad. Sci. Hungar., 26 (1973), 171–190 (in Russian).

    Article  MathSciNet  Google Scholar 

  68. O. Kis, On the convergence of the trigonometrical and harmonical interpolation, Acta Math. Acad. Sci. Hungar., 7 (1956), 173–200 (in Russian).

    Article  MATH  MathSciNet  Google Scholar 

  69. O. Kis, On trigonometric (0,2) interpolation, Acta Math. Acad. Sci. Hungar., 11 (1960), 255–276 (in Russian).

    Article  MATH  MathSciNet  Google Scholar 

  70. O. Kis, Remarks on interpolation, Acta Math. Acad. Sci. Hungar., 11 (1960), 49–64 (in Russian).

    Article  MATH  MathSciNet  Google Scholar 

  71. O. Kis, Remarks on the error of interpolation, Acta Math. Acad. Sci. Hungar., 20 (1969), 339–346 (in Russian).

    Article  MATH  MathSciNet  Google Scholar 

  72. P. P. Korovkin, Linear Operators and Approximation Theory, Hindustan (Delhi, 1960).

    Google Scholar 

  73. M. Lénárd, On (0; 1) Pál-type interpolation with boundary conditions, Puhl. Math. Debrecen, 55 (3–4) (1999), 465–478.

    MATH  Google Scholar 

  74. M. Lénárd, Birkhoff quadrature formulae based on the zeros of Jacobi polynomials, Mathematical and Computer Modelling, 38 (2003), 917–927.

    Article  MATH  MathSciNet  Google Scholar 

  75. A. L. Levin and D.S. Lubinsky, Christoffel functions, orthogonal polynomials, and Nevai’s conjecture for Freud weights, Constr. Approx., 8 (1992), 463–535.

    Article  MATH  MathSciNet  Google Scholar 

  76. A. L. Levin, D. S. Lubinsky and T. Z. Mthembu, Christoffel functions and or-thogonal polynomials for Erdös weights on (−∞,∞), Rendiconti di Matematica di Roma, 14 (1994), 199–289.

    MATH  MathSciNet  Google Scholar 

  77. G. G. Lorentz, K. Jetter and S. D. Riemenschneider, Birkhoff interpolation, in: Encyclopedia of Mathematics and its Applications, 19, Addison-Wesley (London-Amsterdam-Sydney-Tokyo, 1983).

    Google Scholar 

  78. D.S. Lubinsky and G. Mastroianni, Mean convergence of extended Lagrange interpolation with Freud weights, to appear.

    Google Scholar 

  79. D.S. Lubinsky, An update on orthogonal polynomials and weighted approximation on the real line, Acta Appl. Math., 33 (1993), 121–164.

    Article  MATH  MathSciNet  Google Scholar 

  80. D. S. Lubinsky, On converse Marcinkiewicz-Zygmund inequalities in L p p > 1 constr., Approx., 15 (1999), 577–610.

    Article  MATH  MathSciNet  Google Scholar 

  81. S. M. Lozinskii, The spaces \( \tilde C_\omega ^* \) and \( \tilde C_\omega ^* \) and the convergence of interpolation processes in them, Dokl. Akad. Nauk SSSR (N.S.), 59 (1948), 1389–1392 (in Russian).

    MathSciNet  Google Scholar 

  82. T. M. Mills and P. Vértesi, An extension of the Grünwald-Marcinkiewicz interpolation theorem, Bull. Austral Math. Soc., 63 (201), 299-320.

    Google Scholar 

  83. J. Marcinkiewicz, Sur la divergence des polynômes d’interpolation, Acta Sci. Math. (Szeged), 8 (1937), 131–135.

    MATH  Google Scholar 

  84. J. Marczinkiewicz, On interpolation, I., Studia Math., 6 (1936), 1–17 (in French).

    Google Scholar 

  85. G. Mastroianni and P. Nevai, Mean convergence of derivatives of Lagrange interpolation, J. Comput. Appl. Math., 34(3) (1991), 385–396.

    Article  MATH  MathSciNet  Google Scholar 

  86. G. Mastroianni and P. Vértesi, Mean convergence of Lagrange interpolation on arbitrary system of nodes, Acta Sci. Math. (Szeged), 57 (1993), 425–436.

    Google Scholar 

  87. G. Mastroianni and P. Vértesi, Some applications of generalized Jacobi weights, Acta Math. Acad. Sci Hungar., 77 (1997), 323–357.

    MATH  Google Scholar 

  88. D. M. Matjila, Bounds for the weighted Lebesgue function for Freud weights on a larger interval, J. Comp. Appl. Math., 65 (1995), 293–298.

    Article  MATH  MathSciNet  Google Scholar 

  89. T. M. Mills, Some techniques in approximation theory, Math. Sci., 5 (1980), 105–120.

    MATH  MathSciNet  Google Scholar 

  90. L. Neckermann and P. O. Runck, Über ApproximationScigenschaften differenzierter Lagrangescher Interpolationspolynome mit Jacobischen Abszissen, Numer. Math., 12 (1968), 1959–1969.

    Article  MathSciNet  Google Scholar 

  91. P. Nevai and P. Vértesi, Convergence of Hermite-Fejér interpolation at zeros of generalized polynomials, Acta Sci. Math. Szeged, 53 (1989), 77–98.

    MathSciNet  Google Scholar 

  92. P. Nevai and P. Vértesi, Mean convergence of Hermite-Fejér interpolation, Math. Anal. Appl, 105 (1985), 26–58.

    Article  MATH  MathSciNet  Google Scholar 

  93. P. Nevai, Necessary conditions for weighted mean convergence of Lagrange interpolation associated with exponential weights, in preparation.

    Google Scholar 

  94. P. Nevai, Géza Freud, orthogonal polynomials and Christoffel functions: A case study, J. Approx. Th., 48 (1986), 3–167.

    Article  MATH  Google Scholar 

  95. P. Nevai, Lagrange interpolation at zeros of orthogonal polynomials, in: Approxi-mation Theory II., Academic Press (1976), pp. 163–201.

    Google Scholar 

  96. P. Nevai, Mean convergence of Lagrange interpolation. III, Trans. Amer. Math. Soc., 282 (1984), 669–698., and J. Approx. Theory, 60 (1990), 360–363.

    Article  MATH  MathSciNet  Google Scholar 

  97. P. Nevai, Orthogonal Polynomials, Mem. Amer. Math. Soc., 213 (Amer. Mathematical Soc. Providence RI, 1979).

    Google Scholar 

  98. P. Nevai, Remarks on interpolation, Acta Math. Acad. Sci. Hungar., 25 (1974), 129–144 (in Russian).

    Google Scholar 

  99. P. Nevai, Solution of Tuán’ s problem on divergence of Lagrange interpolation in L p with p > 2, J. Approx Theory, 43 (1985), 190–193.

    Article  MATH  MathSciNet  Google Scholar 

  100. L. G. Pál, A new modification of the Hermite-Fejér interpolation, Anal. Math., 1 (1975), 197–205.

    Article  MathSciNet  Google Scholar 

  101. J. Prasad and A. K. Varma, An analogue of a problem of P. Erdös and E. Feldheim on L p convergence of interpolating process, to appear.

    Google Scholar 

  102. Z. F. Sebestyén, Pál-type interpolation on the roots of Hermite polynomials, Pure Math. Appt., 9(3–4) (1998), 429–439.

    MATH  Google Scholar 

  103. Z. F. Sebestyén, Supplement to the Pál type (0; 0,1) lacunary interpolation Anal Math., 25(2) (1999), 147–154.

    Article  MathSciNet  Google Scholar 

  104. A. Sharma and A. K. Varma, Trigonometric interpolation, Duke Math J., 32 (1965), 341–357.

    Article  MATH  MathSciNet  Google Scholar 

  105. Y. G. Shi, Bounds and inequalities for general orthogonal polynomials on finite intervals, J. Approx. Theory, 73 (1993), 303–319.

    Article  MATH  MathSciNet  Google Scholar 

  106. Y. G. Shi, On critical order of Hermite-Fejér type interpolation, in: Progress in Approximation Theory, Academic Press (1991), pp. 761–766.

    Google Scholar 

  107. S. J. Smith, Generalized Hermite-Fejér interpolation polynomials, Expo. Math., 18 (2000), 389–404.

    Article  MATH  MathSciNet  Google Scholar 

  108. G. Somorjai, On a saturation problem, Acta Math. Acad. Sci. Hungar., 32 (1978), 377–381.

    Article  MATH  MathSciNet  Google Scholar 

  109. G. Somorjai, On discrete linear operators in the function space A, in: Constructive Function Theory’ 77 (Sofia, 1980) pp. 489–496.

    Google Scholar 

  110. J. Surányi and P. Tuán, Notes on interpolation, I., Acta Math. Acad. Sci. Hungar., 6 (1955), 67–80.

    Article  MATH  MathSciNet  Google Scholar 

  111. J. Szabados, The exact error of trigonometric interpolation for differentiable functions, Constr. Approx., 8 (1992), 203–210.

    Article  MATH  MathSciNet  Google Scholar 

  112. J. Szabados and P. Vértesi, A survey on mean convergence of interpolatory process, J. Comp. App. Math., 43 (1992), 3–18.

    Article  MATH  Google Scholar 

  113. J. Szabados and P. Vértesi, Interpolation of Functions, in: World Scientific (1990), pp. 1–305+I–XII.

    Google Scholar 

  114. J. Szabados, On Hermite-Fejér interpolation for the Jacobi abscissas, Acta Math. Acad. Sci. Hungar., 23 (1972), 449–464.

    Article  MATH  MathSciNet  Google Scholar 

  115. J. Szabados, Optimal order of convergence of Hermite-Fejér interpolation for general system of nodes, Acad. Sci. Math. (Szeged), 57 (1993), 463–470.

    MATH  MathSciNet  Google Scholar 

  116. J. Szabados, On the convergence of quadrature procedures in certain classes of functions, Acta Math. Acad. Sci. Hungar., 18 (1967), 97–111.

    Article  MATH  MathSciNet  Google Scholar 

  117. J. Szabados, On the convergence of the derivatives of projection operators, Analysis, 7 (1987), 349–357.

    MATH  MathSciNet  Google Scholar 

  118. J. Szabados, On the order of magnitude oof fundamental polynomials of Hermite interpolation, Acta Math. Acad. Sci. Hungar., 61 (1993), 357–368.

    MATH  MathSciNet  Google Scholar 

  119. J. Szabados, Weighted Lagrange and Hermite-Fejér interpolation on the real line, J. oflnequal. and Appl, 1 (1997), 99–123.

    Article  MATH  MathSciNet  Google Scholar 

  120. J. Szabados and A. K. Varma, On a convergent Pál-type (0,2) interpolation process, Acta Math. Hungar., 66 (1995), 301–326.

    Article  MATH  MathSciNet  Google Scholar 

  121. V. E. S. Szabó, On Pál-type interpolation processes, Approximation and optimization, Vol. II (Cluj-Napoca, 1996), 221-226, Transilvania, Cluj-Napoca, 1997.

    Google Scholar 

  122. V. E. S. Szabó, A generalization of Pal interpolation processes. II, Acta Math. Hungar., 74 (1–2) (1997), 19–29.

    Article  MATH  MathSciNet  Google Scholar 

  123. V. E. S. Szabó, A generalization of Pal interpolation processes. III. The Hermite case, Acta Math. Hungar., 74 (3) (1997), 191–201.

    Article  MATH  MathSciNet  Google Scholar 

  124. V. E. S. Szabó, A generalization of Pál interpolation processes. IV. The Jacobi case, Acta Math. Hungar., 74 (4) (1997), 287–300.

    Article  MATH  MathSciNet  Google Scholar 

  125. V. E. S. Szabó, Weighted interpolation, I., to appear.

    Google Scholar 

  126. L. Szili, An interpolation process on the roots of the integrated Legendre polynomials, Anal. Math., 9 (1983), 235–245.

    Article  MATH  MathSciNet  Google Scholar 

  127. L. Szili, A convergence theorem for the Pal method of interpolation on the roots of Hermite polynomials, Anal. Math., 11 (1985), 75–84.

    Article  MATH  MathSciNet  Google Scholar 

  128. L. Szili and P. Vértesi, An Erdös type convergence process in weighted interpolation, II, Acta Math. Acad. Sci. Hungar., 98 (2003), 129–162.

    MATH  Google Scholar 

  129. A. F. Timan, Approximation Theory of Functions of a Real Variable (Moscow, 1960) (in Russian).

    Google Scholar 

  130. P. Tuán, On some open problems of approximation theory, J. Approx. Theory, 29 (1980), 23–85.

    Article  MathSciNet  Google Scholar 

  131. P. Vértesi, An Erdös type convergence process in weighted interpolation. I. (Freud type weights), Acta Math. Hungar., 91 (2000), 195–215.

    Article  Google Scholar 

  132. P. Vértesi, Derivatives of projection operators, Analysis, 9 (1989), 145–156.

    MATH  MathSciNet  Google Scholar 

  133. P. Vértesi, Hermite-Fejér type interpolations, II, Acta Math. Acad. Sci. Hungar., 33 (1979), 333–343.

    Article  MATH  MathSciNet  Google Scholar 

  134. P. Vértesi, Hermite-Fejér type interpolations, IV., Acta Math. Acad. Sci. Hungar., 39 (1982), 85–93.

    Google Scholar 

  135. P. Vértesi, Lebesgue function type sums of Hermite interpolations, Acta Math. Acad. Sci. Hungar., 64 (1994), 341–349.

    MATH  Google Scholar 

  136. P. Vértesi, New estimation for the Lebesgue function of Lagrange interpolation, Acta Math. Acad. Sci. Hungar., 40 (1982), 21–27.

    Article  MATH  MathSciNet  Google Scholar 

  137. P. Vértesi, On σ-nor mal pointsystems, in: A survey Approximation Theory (edited by M. W. Müller et. al.), Math. Res., vol. 86., Proc. IDoMAT 95, pp. 317–327.

    Google Scholar 

  138. P. Vértesi, On the Lebesgue function of weighted Lagrange interpolation, I., Constr. Approx., 15 (1999), 355–367.

    Article  MATH  MathSciNet  Google Scholar 

  139. P. Vértesi, On the Lebesgue function of weighted Lagrange interpolation, IL, J. Austral Math. Soc. (Series A), 65 (1998), 145–162.

    Article  MATH  Google Scholar 

  140. P. Vértesi, One sided convergence conditions for Lagrange interpolation, Acta Sci. Math. (Szeged), 45 (1983), 419–428.

    MATH  MathSciNet  Google Scholar 

  141. P. Vértesi, Optimal Lebesgue constant for Lagrange interpolation, SIAM J. Numer. Anal., 27 (1990), 1322–1331.

    Article  MATH  MathSciNet  Google Scholar 

  142. P. Vértesi, Saturation of the Shepard operators, Acta Math. Acad. Sci. Hungar., 72 (1996), 307–317.

    MATH  Google Scholar 

  143. P. Vértesi, Tuán-type problems on mean convergence, I–II., Acta Math. Acad. Sci. Hungar., 65 (1994), 115–139., and (1994), 237–242.

    MATH  Google Scholar 

  144. A. Zygmund, Trigonometric Series I, Cambridge University Press (1959).

    Google Scholar 

  145. A. Zygmund, Trigonometric Series II, Cambridge University Press (1959).

    Google Scholar 

  146. A. Zygmund, Jozef Marcinkiewicz, in: Collected works of Jozef Marcinkiewicz, pp. 4.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 János Bolyai Mathematical Society and Springer-Verlag

About this chapter

Cite this chapter

Vértesi, P. (2006). Classical (Unweighted) and Weighted Interpolation. In: Horváth, J. (eds) A Panorama of Hungarian Mathematics in the Twentieth Century I. Bolyai Society Mathematical Studies, vol 14. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30721-1_4

Download citation

Publish with us

Policies and ethics