Skip to main content

Part of the book series: Bolyai Society Mathematical Studies ((BSMS,volume 14))

  • 1402 Accesses

Abstract

Let us consider the family of measurable functions defined on a Lebesgue measurable subset E of finite or infinite measure of the real line \( \mathbb{R}: = \left( { - \infty ,\infty } \right) \). The functions may take real or complex values. The function space L 2 (E) consists of all measurable functions f whose squares |f|2 are integrable in the Lebesgue sense. By the Schwarz inequality, f will then be integrable on the subsets of finite measure. Let us endow L 2 (E) with the inner product and norm

$$ \left( {f|g} \right): = \int_E {f\left( x \right)\overline {g\left( x \right)} dx} and \left\| f \right\|: = \sqrt {\left( {f|f} \right)} , $$

respectively. Then L 2 (E) becomes a normed linear space whose norm is derived from the inner product. We say that a sequence (f n : n=1, 2, ...) of functions in L 2 (E) converges in the mean to a function f in L 2 (E) if

$$ \mathop {\lim }\limits_{n \to \infty } \left\| {f_n - f} \right\| = 0. $$

This survey paper was partially supported by the Hungarian National Foundation for Scientific Research under Grants TS 044 782 and T 046 192.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alexits, György, Convergence Problems of Orthogonal Series, International Series of Monographs on Pure and Applied Mathematics, Vol. 20. Pergamon Press (New York-Oxford-Paris, 1961).

    Google Scholar 

  2. Haar, Alfréd, Összegyűjtött Munkái = Gesammelte Arbeiten, ed. Béla Sz.-Nagy, Akadémiai Kiadó (Budapest, 1959).

    Google Scholar 

  3. [66]Hardy, G. H.-Riesz, Marcel, The General Theory of Dirichlet Series, Cambridge Tracts in Mathematics and Mathematical Physics, No. 18, Cambridge, University Press (London, 1915), reprint: 1952.

    Google Scholar 

  4. Hardy, G. H, Divergent Series, Oxford University Press (London, 1949).

    MATH  Google Scholar 

  5. Leindler, László, Strong Approximation by Fourier Series, Akadémiai Kiadó (Budapest, 1985).

    MATH  Google Scholar 

  6. Riesz, Frigyes, Összegyűjtött Munkái = Œuvres complètes = Gesammelte Arbeiten, ed. Á. Császár, Akadémiai Kiadó (Budapest, 1960).

    Google Scholar 

  7. Riesz, Marcel, Collected Papers, ed. L. Gårding and L. Hörmander, Springer-Verlag (Berlin-Heidelberg-New York, 1988).

    Google Scholar 

  8. Zygmund, Antoni, Trigonometric Series, Cambridge University Press (London-New York, 1959).

    MATH  Google Scholar 

  9. G. Alexits, A Fourier-sor Cesàro közepeivel való approximáció nagyságrendjéről (On the order of approximation by the Cesàro means of Fourier series), Mat. Fiz. Lapok, 48 (1941), 410–421 — Sur l’ordre de grandeur de l’approximation d’une function périodique par les sommes de Fejér, Acta Math. Acad. Sei. Hungar., 3 (1952), 29–42.

    MATH  MathSciNet  Google Scholar 

  10. G. Alexits, Sur les bornes de la théorie de l’approximation des fonctions continues par polynômes, Magyar Tud. Akad. Kutató Int. Közl., 8 (1963), 329–340.

    MATH  MathSciNet  Google Scholar 

  11. R. A. De Vore, The approximation of continuous functions by positive linear operators, in: Lect. Notes in Math., 293, Springer (Berlin-Heidelberg-New York, 1972).

    Google Scholar 

  12. S. Kaczmarz, Über die Reihen von allgemeinen Orthogonalfunktionen, Math. Annalen, 96 (1925), 148–151.

    Article  MathSciNet  Google Scholar 

  13. S. Kaczmarz, Über die Summierbarkeit der Orthogonalreihen, Math. Z., 26 (1927), 99–105.

    Article  MATH  MathSciNet  Google Scholar 

  14. B. S. Kašin, On Weyl’s multipliers for almost everywhere convergence of orthogonal series, Analysis Math., 2 (1976), 249–266.

    Article  Google Scholar 

  15. A.N. Kolmogoroff, Une contribution à l’étude de la convergence des séries de Fourier, Fund. Math., 5 (1924), 96–97.

    Google Scholar 

  16. D. Menchoff, Sur les séries de fonctions orthogonales. I, Fund. Math., 4 (1923), 82–105.

    MATH  Google Scholar 

  17. D. E. Menchoff, Sur les séries de fonctions orthogonales bornées dans leur ensemble, Recueil Math. Moscou (Mat. Sb.), 3 (1938), 103–118.

    Google Scholar 

  18. D. E. Menchoff, Sur les séries de fonctions orthogonales. II, Fund. Math., 8 (1926), 56–108.

    MATH  Google Scholar 

  19. F. Móricz and K. Tandon, An improved Menshov-Rademacher theorem, Proc. Amer. Math. Soc., 124 (1996), 877–885.

    Article  MATH  MathSciNet  Google Scholar 

  20. W. Orlicz, Zur Theorie der Orthogonalreihen, Bulletin Internat. Acad. Sci. Polonaise Cracovie, (1927), 81–115.

    Google Scholar 

  21. H. Rademacher, Einige Sätze űber Reihen von allgemeinen Orthogonalfunktionen, Math. Annalen, 87 (1922), 112–138.

    Article  MathSciNet  Google Scholar 

  22. K. Tandori, Über die orthogonalen Funktionen. I, Acta Sci. Math. (Szeged), 18 (1957), 57–130.

    MathSciNet  Google Scholar 

  23. K. Tandori, Über die Konvergenz der Orthogonalreihen. II, Acta Sci. Math. (Szeged), 25 (1964), 219–232.

    MathSciNet  Google Scholar 

  24. K. Tandori, Einfacher Beweis eines Satzes von B. S. Kašin, Acta Sci. Math. (Szeged), 39 (1977), 175–178.

    MATH  MathSciNet  Google Scholar 

  25. K. Tandori, Über beschränkte orthonormierte Systeme, Acta Math. Acad. Sci. Hungar., 31 (1978), 279–285.

    Article  MATH  MathSciNet  Google Scholar 

  26. K. Tandori, Über die Divergenz der Orthogonalreihen, Publicationes Math. Debrecen, 8 (1961), 291–307.

    MATH  MathSciNet  Google Scholar 

  27. K. Tandori, Über die orthogonalen Funktionen. II (Summation), Acta Sci. Math. (Szeged), 18 (1957), 149–168.

    MathSciNet  Google Scholar 

  28. K. Tandori, Über die orthogonalen Funktionen. X (Unbedingte Konvergenz), Acta Sci. Math. (Szeged), 23 (1962), 185–221.

    MATH  MathSciNet  Google Scholar 

  29. M. Zamansky, Classes de saturation de certains procédés d’approximation des séries de Fourier, Annales de l’Ecole Normale Supérieure, 66 (1949), 19–93.

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 János Bolyai Mathematical Society and Springer-Verlag

About this chapter

Cite this chapter

Móicz, F. (2006). Constructive Function Theory: I. Orthogonal Series. In: Horváth, J. (eds) A Panorama of Hungarian Mathematics in the Twentieth Century I. Bolyai Society Mathematical Studies, vol 14. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30721-1_2

Download citation

Publish with us

Policies and ethics