Skip to main content

Part of the book series: Bolyai Society Mathematical Studies ((BSMS,volume 14))

Abstract

Topology emerged as a separate branch of mathematics at the end of the nineteenth and the beginning of the twentieth century as a result of efforts to deal with convergence problems, to lay the foundations of real analysis and functional analysis, and to understand the geometric aspects of complex analysis. The main contributions were made in Western Europe, especially by Bernhard Riemann, Georg Cantor, Jules Henri Poincaré and Felix Hausdorff.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Császár, Ákos, Fondements de la topologie générale, Akadémiai Kiadó (Budapest-Gauthiers-Villars (Paris, 1960).

    MATH  Google Scholar 

  2. Császár, Ákos, Foundations of General Topology, Pergamon Press (Oxford-London-New York-Paris, 1963).

    Google Scholar 

  3. Kerékjártó, Béla, Vorlesungen über Topologie. I. Flächentopologie, Grundlehren der Mathematischen Wissenschaften in Einzeldarstellungen, Band VIII, Springer-Verlag (Berlin, 1923).

    MATH  Google Scholar 

  4. Kerékjártó, Béla, A geometria alapjairól. I. Az euklidesi geometria elemi felépítése, A szerző kiadása a Magyar Tudományos Akadémia támogatásával, Szeged, 1937; II. Projektív geometria, Magyar Tudományos Akadémia (Budapest, 1944).

    Google Scholar 

  5. Kőnig, Dénes, Theorie der endlichen und unendlichen Graphen, Kombinatorische Topologie der Streckenkomplexe, Akademische Verlagsgesellschaft M.B.H. (Leipzig, 1936)/ Chelsea Publishing Company (American Mathematical Society) (New York, 1950).

    Google Scholar 

  6. Radó, Tibor — Reichelderfer, P. V., Continuous Transformations in Analysis with an introduction to algebraic topology, Die Grundlehren der Mathematischen Wissenschaften in Einzedarstellungen, Band LXXV, Springer-Verlag (Berlin-Göttingen-Heidelberg, 1955).

    MATH  Google Scholar 

  7. Gy. Alexits, Homogén racionális görbékől, Matematikai és Fizikai Lapok, 44 (1937), 38–39.

    Google Scholar 

  8. Gy. Alexits, Über verstreute Mengen, Math. Annalen, 118 (1942), 379–384.

    Article  Google Scholar 

  9. J. Czipszer, Sur une propriété générale des suites convergentes de fonctions arbitraires, Acta Math. Acad. Sci. Hung., 10 (1959), 305–315.

    Article  MATH  MathSciNet  Google Scholar 

  10. J. Czipszer and Á. Császár, Sur les courbes irramifiées, Acta Mat. Acad. Sci. Hung., 9 (1958), 315–328.

    Article  MATH  Google Scholar 

  11. J. Czipszer and Á. Császár, Sur des critères généraux d’approximation uniforme, Ann. Univ. Sci. Budapest Eötvös Sect. Math., 6 (1963), 17–26.

    MATH  Google Scholar 

  12. Á. Császár and J. Deák, Simultaneous extensions of proximities, semi-uniformities, contiguities and merotopies I.–IV., Math. Pannon., 1/2 (1990), 67–90, 2/1 (1991), 19–35, 2/2 (1991), 3–23, 3/1 (1992), 57–76.

    Google Scholar 

  13. E. Deák, Applications of the Theory of Directional Structures, I, Studia Sci. Math. Hungar., 15 (1980), 45–61.

    MATH  MathSciNet  Google Scholar 

  14. E. Deák, An embedding theorem for separable metrizable spaces, Studia Sci. Math. Hungar., 18 (1983), 413–426.

    MATH  MathSciNet  Google Scholar 

  15. J. Deák, Preproximities and internal characterizations of complete regularity, Studia Sci. Math. Hungar., 24 (1989), 147–177.

    MATH  MathSciNet  Google Scholar 

  16. J. Deák, On proximity-like relations introduced by F. Riesz in 1908, Studia Sci. Math. Hungar., 25 (1990), 387–400.

    MATH  MathSciNet  Google Scholar 

  17. J. Deák, Extensions of quasi-uniformities for prescribed bitopologies I–II., Studia Sci. Math. Hungar., 25 (1990), 45–67, 69–91.

    MATH  MathSciNet  Google Scholar 

  18. J. Deák, On bitopological spaces 1.–III., Studia Sci. Math. Hungar., 25 (1990), 457–481, 26 (1991), 1–17, 19–33.

    MATH  MathSciNet  Google Scholar 

  19. J. Deák, On the coincidence of quasi-uniform completeness defined by filter pairs, Studia Sci. Math. Hungar., 26 (1991), 411–413.

    MATH  MathSciNet  Google Scholar 

  20. J. Deák, A survey on compatible extensions, Colloq. Math. Soc. János Bolyai, 55 (1993), 127–175.

    Google Scholar 

  21. J. Deák, Extending a quasi-metric, Studia Sci. Math. Hungar., 28 (1993), 105–113.

    MATH  MathSciNet  Google Scholar 

  22. J. Deák, Simultaneous extensions, Studia Sci. Math. Hungar., 32 (1996), 323–347.

    MATH  MathSciNet  Google Scholar 

  23. E. J. Mickle and T. Radó, On covering theorems, Fund. Math., 45 (1958), 325–331.

    MATH  MathSciNet  Google Scholar 

  24. M. H. A. Newman, Elements of the topology of plane sets of points, Cambridge (1939).

    Google Scholar 

  25. Gy. Pál, Térbeli Jordan Görbékről, Math. és Phys. Lapok, 24 (1915), 236–242.

    Google Scholar 

  26. Gy. Pál, Zur Topologie der Ebene, Acta Litt. ac Scient. Univ. Hung., 1 (1922-1923), 226–239.

    Google Scholar 

  27. H. Rademacher and O. Toeplitz, Von Zahlen und Figuren, Berlin (1930).

    Google Scholar 

  28. T. Radó, Über den Begriff der Riemannschen Fläche, Acta Szeged, 2 (1925), 101–121.

    Google Scholar 

  29. T. Radó, Topological index, Fund. Math., 27 (1936), 212–225.

    MATH  Google Scholar 

  30. T. Radó and P. Reichelderfer, On cyclic transitivity, Fundamenta Mathematicae, 34 (1947), 14–29.

    MATH  MathSciNet  Google Scholar 

  31. T. Radó and P. Reichelderfer, On n-dimensional concept of bounded variation, absolute continuity and generalized Jacobian, Proc. Nat. Acad. USA, 35 (1949), 678–681.

    Article  MATH  Google Scholar 

  32. Gy. Szőkefalvi Nagy, Über ein topologisches Problem von Gauss, Math. Zeitschr., 26 (1927), 579–592.

    Article  Google Scholar 

  33. Gy. Szőkefalvi Nagy, Über einen topologischen Satz, Acta Szeged, 4 (1929), 246–247.

    Google Scholar 

  34. R. L. Wilder, Point sets in three and higher dimensions and their investigation by means of a unified Analysis Situs, Bull. Amer. Math. Soc., 38 (1932), 649–692.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 János Bolyai Mathematical Society and Springer-Verlag

About this chapter

Cite this chapter

Bognár, M., Császár, Á. (2006). Topology. In: Horváth, J. (eds) A Panorama of Hungarian Mathematics in the Twentieth Century I. Bolyai Society Mathematical Studies, vol 14. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30721-1_1

Download citation

Publish with us

Policies and ethics