Advertisement

Research and Implementation of the Context-Aware Middleware Based on Neural Network

  • Jong-Hwa Choi
  • Soon-yong Choi
  • Dongkyoo Shin
  • Dongil Shin
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3397)

Abstract

Smart homes integrated with sensors, actuators, wireless networks and context-aware middleware will soon become part of our daily life. This paper describes a context-aware middleware providing an automatic home service based on a user’s preference inside a smart home. The context-aware middleware utilizes 6 basic data for learning and predicting the user’s preference on the home appliances: the pulse, the body temperature, the facial expression, the room temperature, the time, and the location. The six data sets construct the context model and are used by the context manager module. The user profile manager maintains history information for home appliances chosen by the user. The user-pattern learning and predicting module based on a neural network predicts the proper home service for the user. The testing results show that the pattern of an individual’s preferences can be effectively evaluated and predicted by adopting the proposed context model.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Weiser, M.: The Computer for the 21st Century. Scientific American, 94–104 (September 1991)Google Scholar
  2. 2.
    Sherif, M.H.: Intelligent homes: A new Challenge in telecommunications standardization. In: Communications Magazine, vol. 40(1), pp. 8–8. IEEE, Los Alamitos (2002)Google Scholar
  3. 3.
    Kango, R., Moore, P.R., Pu, J.: Networked smart home appliances - enabling real ubiquitous culture. In: Proceedings of the 2002 IEEE 5th International Workshop on Networked Appliances, Liverpool, October, pp. 76–80 (2002)Google Scholar
  4. 4.
    Abowd, G.D., Dey, A.K., Brown, P.J., et al.: Towards a better understanding of context and context-awareness. In: Gellersen, H.-W. (ed.) HUC 1999. LNCS, vol. 1707, p. 304. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  5. 5.
    Sun, J.-Z., Sauvola, J.: Towards a conceptual model for context-aware adaptive services. In: Proceedings of the Fourth International Conference on Parallel and Distributed Computing, Applications and Technologies, August 2003, pp. 90–94 (2003)Google Scholar
  6. 6.
    Anhalt, J., Smailagic, A., Siewiorek, D.P., Gemperle, F.: Towards Context-Aware Computing: Experiences and Lessons. Pervasive Computing (2002)Google Scholar
  7. 7.
    Ranganathan, A., Campbell, R.H.: A Middleware for Context-Aware Agents in Ubiquitous Computing Environments. In: Endler, M., Schmidt, D.C. (eds.) Middleware 2003. LNCS, vol. 2672. Springer, Heidelberg (2003)Google Scholar
  8. 8.
    Capra, L., Emmerich, W., Mascolo, C.: Reflective Middleware Solutions for Context- Aware Applications. In: Yonezawa, A., Matsuoka, S. (eds.) Reflection 2001. LNCS, vol. 2192, p. 126. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  9. 9.
    Yau, S.S., Karim, F., Wang, Y., Wang, B., Gupta, K.S.: Reconfigurable Context-Sensitive middleware for Pervasive Computing. Pervasive Computing (2002)Google Scholar
  10. 10.
    Crowley, J.L.: Context aware observation of human activities. In: Proceedings of the 2002 IEEE International Conference on Multimedia and Expo., August 2002, vol. 1, pp. 909–912 (2002)Google Scholar
  11. 11.
    Charles, D.: The expression of the emotions in man and animals. Electronic Text Center, University of Virginia LibraryGoogle Scholar
  12. 12.
    Chen, Z., An, Y., Jia, K., Sun, C.: Intelligent control of alternative current permanent manage servomotor using neural network. In: Proceedings of the Fifth International Conference on Electrical Machines and Systems, August 2001, vol. 2, pp. 18–20 (2001)Google Scholar
  13. 13.
    Weiss, S.M., Kulikowski, C.A.: Computer Systems that Learn. Morgan Kaufmann, San Francisco (1991)Google Scholar
  14. 14.
    Burges, C.J.C.: A tutorial on support vector machines for pattern recognition. Data Mining Knowl. Disc. 2(2), 1–47 (1998)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Jong-Hwa Choi
    • 1
  • Soon-yong Choi
    • 1
  • Dongkyoo Shin
    • 1
  • Dongil Shin
    • 1
  1. 1.Department of Computer Science and EngineeringSejong UniversitySeoulKorea

Personalised recommendations