A Scheduling Analysis in FMS Using the Transitive Matrix

  • Jong-Kun Lee
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3397)


The analysis of the scheduling problem in FMS using the transitive matrix has been studied. Since the control flows in the Petri nets are based on the token flows, the basic unit of concurrency (short BUC) could be defined to be a set of the executed control flows in the net. In addition, original system could be divided into some subnets such as BUC of the machine’s operations and analyzed the feasibility time in each schedule. The usefulness of transitive matrix to slice off some subnets from the original net, and the explanation in an example will be discussed.


Schedule Problem Behavioral Condition Part Type Cyclic Schedule Schedule Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Camus, H.: Conduite de Systèmes Flexibles de Production manufacturière par composition de Régimes permanents cycliques: modélisation et évaluation de performances à l.aide des Réseaux de Petri.These de doctorat USTL 1, mars (1997)Google Scholar
  2. 2.
    Carlier, J., Chretienne, P.: Timed Petri nets Schedules. In: Rozenberg, G. (ed.) Advanced in PN 1988, pp. 62–84. Springer, Berlin (1988)Google Scholar
  3. 3.
    Gentina, J.C., Korbaa, O.: Formal approach of FMS Cyclic Scheduling. In: Proceeding IEEE SMC 2002 (2002)Google Scholar
  4. 4.
    Hillion, H., Proth, J.-M., Xie, X.-L.: A Heuristic Algorithm for Scheduling and Sequence Job- Shop problem. In: Proceeding 26th CDC, pp. 612–617 (1987)Google Scholar
  5. 5.
    Julia, S., Valette, R., Tazza, M.: Computing a feasible Schedule Under a Set of Cyclic Constraints. In: 2nd International Conference on Industrial Automation, pp. 141–146 (1995)Google Scholar
  6. 6.
    Korbaa, O., Camus, H., Gentina, J.-C.: FMS Cyclic Scheduling with Overlapping production cycles. In: Azéma, P., Balbo, G. (eds.) ICATPN 1997, vol. 1248, pp. 35–52. Springer, Heidelberg (1997)Google Scholar
  7. 7.
    Korbaa, O., Benasser, A., Yim, P.: Two FMS Scheduling Methods based on Petri Nets: a global and local approach. International Journal of Production Research 41(7), 1349–1371 (2003)zbMATHCrossRefGoogle Scholar
  8. 8.
    Lee, D.Y., DiCesare, F.: Petri Net-based heuristic Scheduling for Flexible Manufacturing. In: Zhou, M.C. (ed.) Petri Nets in Flexible and Agile Automation, pp. 149–187. Kluwer Aca. Pub., USA (1995)Google Scholar
  9. 9.
    Lee, J., Korbaa, O.: Modeling and Scheduling of ratio-driven FMS using Unfolding time Petrinets. Jr. of Computer & Industrial Engineering 46(4), 639–653 (2004)CrossRefGoogle Scholar
  10. 10.
    Lee, J., Korbaa, O., Gentina, J.-C.: Slice Analysis Method of Petri nets in FMS Using the Transitive Matrix. In: Proceeding INCOM 2001 (2001)Google Scholar
  11. 11.
    Lee, J.: Benchmarking Study of the Cyclic Scheduling Analysis Methods in FMS. In: Proceeding IEEE SMC 2002(2002)Google Scholar
  12. 12.
    Lee, W.J., Cha, S.D., Kwon, Y.R.: A slicing-Based Approach to Enhance Petri net reachability Analysis. Jr. of Research and Practice in Information technology 32(2), 131–143 (2000)Google Scholar
  13. 13.
    Liu, J., Itoh, T., Miyazawa, I., Seikiguchi, T.: A Research on Petri nets Properties using Transitive matrix. In: Proceeding IEEE SMC 1999, pp. 888–893 (1999)Google Scholar
  14. 14.
    Murata, T.: Petri Nets: Properties, Analysis an Applications. Proceedings of the IEEE 77(4), 541–580 (1989)CrossRefGoogle Scholar
  15. 15.
    Ohl, H., Camus, H., Castelain, E., Gentina, J.C.: Petri nets Modelling of Ratio-driven FMS and Implication on the WIP for Cyclic Schedules. In: Proceeding SMC 1995, pp. 3081–3086 (1995)Google Scholar
  16. 16.
    Richard, P.: Scheduling timed marked graphs with resources: a serial method. Accepted in Proceeding INCOM 1998 (1998)Google Scholar
  17. 17.
    Valentin, C.: Modeling and Analysis methods for a class of Hybrid Dynamic Systems. In: Proceeding Symposium ADPM 1994, pp. 221–226 (1994)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Jong-Kun Lee
    • 1
  1. 1.LIS/Computer Engineering DeptChangwon national UniversityChangwon, KyungnamKorea

Personalised recommendations