Skip to main content

Discovering Treewidth

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3381))

Abstract

Treewidth is a graph parameter with several interesting theoretical and practical applications. This survey reviews algorithmic results on determining the treewidth of a given graph, and finding a tree decomposition of small width. Both theoretical results, establishing the asymptotic computational complexity of the problem, as experimental work on heuristics (both for upper bounds as for lower bounds), preprocessing, exact algorithms, and postprocessing are discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alber, J., Dorn, F., Niedermeier, R.: Experimental evaluation of a tree decomposition based algorithm for vertex cover on planar graphs. To appear in Discrete Applied Mathematics (2004)

    Google Scholar 

  2. Amir, E.: Efficient approximations for triangulation of minimum treewidth. In: Proc. 17th Conference on Uncertainty in Artificial Intelligence, pp. 7–15 (2001)

    Google Scholar 

  3. Arnborg, S., Corneil, D.G., Proskurowski, A.: Complexity of finding embeddings in a k-tree. SIAM J. Alg. Disc. Meth. 8, 277–284 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  4. Arnborg, S., Proskurowski, A.: Characterization and recognition of partial 3-trees. SIAM J. Alg. Disc. Meth. 7, 305–314 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bachoore, E., Bodlaender, H.L.: New upper bound heuristics for treewidth. Technical Report UU-CS-2004-036, Institute for Information and Computing Sciences, Utrecht University, Utrecht, the Netherlands (2004)

    Google Scholar 

  6. Becker, A., Geiger, D.: A sufficiently fast algorithm for finding close to optimal clique trees. Artificial Intelligence 125, 3–17 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  7. Berry, A., Blair, J., Heggernes, P., Peyton, B.: Maximum cardinality search for computing minimal triangulations of graphs. Algorithmica 39, 287–298 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  8. Blair, J.R.S., Heggernes, P., Telle, J.: A practical algorithm for making filled graphs minimal. Theor. Comp. Sc. 250, 125–141 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  9. Bodlaender, H.L.: A tourist guide through treewidth. Acta Cybernetica 11, 1–23 (1993)

    MATH  MathSciNet  Google Scholar 

  10. Bodlaender, H.L.: Improved self-reduction algorithms for graphs with bounded treewidth. Disc. Appl. Math. 54, 101–115 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  11. Bodlaender, H.L.: A linear time algorithm for finding tree-decompositions of small treewidth. SIAM J. Comput. 25, 1305–1317 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  12. Bodlaender, H.L.: A partial k-arboretum of graphs with bounded treewidth. Theor. Comp. Sc. 209, 1–45 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  13. Bodlaender, H.L., Gilbert, J.R., Hafsteinsson, H., Kloks, T.: Approximating treewidth, pathwidth, frontsize, and minimum elimination tree height. J. Algorithms 18, 238–255 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  14. Bodlaender, H.L., Hagerup, T.: Parallel algorithms with optimal speedup for bounded treewidth. SIAM J. Comput. 27, 1725–1746 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  15. Bodlaender, H.L., Kloks, T.: Efficient and constructive algorithms for the pathwidth and treewidth of graphs. J. Algorithms 21, 358–402 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  16. Bodlaender, H.L., Kloks, T., Kratsch, D., Mueller, H.: Treewidth and minimum fill-in on d-trapezoid graphs. J. Graph Algorithms and Applications 2(5), 1–23 (1998)

    MathSciNet  Google Scholar 

  17. Bodlaender, H.L., Koster, A.M.C.A.: On the maximum cardinality search lower bound for treewidth. In: Hromkovič, J., Nagl, M., Westfechtel, B. (eds.) WG 2004. LNCS, vol. 3353, pp. 81–92. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  18. Bodlaender, H.L., Koster, A.M.C.A.: Safe separators for treewidth. In: Proceedings 6th Workshop on Algorithm Engineering and Experiments, ALENEX 2004, pp. 70–78 (2004)

    Google Scholar 

  19. Bodlaender, H.L., Koster, A.M.C.A., van den Eijkhof, F., van der Gaag, L.C.: Pre-processing for triangulation of probabilistic networks. In: Breese, J., Koller, D. (eds.) Proceedings of the 17th Conference on Uncertainty in Artificial Intelligence, pp. 32–39. Morgan Kaufmann, San Francisco (2001)

    Google Scholar 

  20. Bodlaender, H.L., Koster, A.M.C.A., Wolle, T.: Contraction and treewidth lower bounds. In: Albers, S., Radzik, T. (eds.) ESA 2004. LNCS, vol. 3221, pp. 628–639. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  21. Bodlaender, H.L., Koster, A.M.C.A., Wolle, T.: Degree-based treewidth lower bounds (2004) (Paper in preparation)

    Google Scholar 

  22. Bodlaender, H.L., Möhring, R.H.: The pathwidth and treewidth of cographs. SIAM J. Disc. Math. 6, 181–188 (1993)

    Article  MATH  Google Scholar 

  23. Bodlaender, H.L., Rotics, U.: Computing the treewidth and the minimum fill-in with the modular decomposition. Algorithmica 36, 375–408 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  24. Bodlaender, H.L., Thilikos, D.M.: Treewidth for graphs with small chordality. Disc. Appl. Math. 79, 45–61 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  25. Bodlaender, H.L., van Antwerpen-de Fluiter, B.: Parallel algorithms for series parallel graphs and graphs with treewidth two. Algorithmica 29, 543–559 (2001)

    Google Scholar 

  26. Bodlaender, H.L., Wolle, T.: Contraction degeneracy on cographs. Technical Report UU-CS-2004-031, Institute for Information and Computing Sciences, Utrecht University, Utrecht, the Netherlands (2004)

    Google Scholar 

  27. Bouchitté, V., Kratsch, D., Müller, H., Todinca, I.: On treewidth approximations. Disc. Appl. Math. 136, 183–196 (2004)

    Article  MATH  Google Scholar 

  28. Bouchitté, V., Todinca, I.: Treewidth and minimum fill-in: Grouping the minimal separators. SIAM J. Comput. 31, 212–232 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  29. Bouchitté, V., Todinca, I.: Listing all potential maximal cliques of a graph. Theor. Comp. Sc. 276, 17–32 (2002)

    Article  MATH  Google Scholar 

  30. Bouchitté, V., Todinca, I.: Approximating the treewidth of at-free graphs. Disc. Appl. Math. 131, 11–37 (2003)

    Article  MATH  Google Scholar 

  31. Broersma, H., Dahlhaus, E., Kloks, T.: A linear time algorithm for minimum fill in and tree width for distance hereditary graphs. Disc. Appl. Math. 99, 367–400 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  32. Broersma, H., Kloks, T., Kratsch, D., Müller, H.: A generalization of AT-free graphs and a generic algorithm for solving triangulation problems. Algorithmica 32, 594–610 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  33. Clautiaux, F., Moukrim, S.N.A., Carlier, J.: Heuristic and meta-heuristic methods for computing graph treewidth. RAIRO Oper. Res. 38, 13–26 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  34. Clautiaux, F., Carlier, J., Moukrim, A., Négre, S.: New lower and upper bounds for graph treewidth. In: Jansen, K., Margraf, M., Mastrolli, M., Rolim, J.D.P. (eds.) WEA 2003. LNCS, vol. 2647, pp. 70–80. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  35. Cook, W., Seymour, P.D.: Tour merging via branch-decomposition. Informs J. on Computing 15(3), 233–248 (2003)

    Article  MathSciNet  Google Scholar 

  36. Courcelle, B., Makowsky, J.A., Rotics, U.: Linear time solvable optimization problems on graphs of bounded clique width. Theor. Comp. Sc. 33, 125–150 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  37. Dahlhaus, E.: Minimal elimination ordering inside a given chordal graph. In: Möhring, R.H. (ed.) WG 1997. LNCS, vol. 1335, pp. 132–143. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  38. Dahlhaus, E.: Minimum fill-in and treewidth for graphs modularly decomposable into chordal graphs. In: Hromkovič, J., Sýkora, O. (eds.) WG 1998. LNCS, vol. 1517, pp. 351–358. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  39. Dechter, R.: Bucket elimination: a unifying framework for reasoning. Acta Informatica 113, 41–85 (1999)

    MATH  MathSciNet  Google Scholar 

  40. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, Heidelberg (1998)

    MATH  Google Scholar 

  41. Fomin, F.V., Kratsch, D., Todinca, I.: Exact (exponential) algorithms for treewidth and minimum fill-in. In: Proceedings of the 31st International Colloquium on Automata, Languages and Programming, pp. 568–580 (2004)

    Google Scholar 

  42. Gavril, F.: The intersection graphs of subtrees in trees are exactly the chordal graphs. J. Comb. Theory Series B 16, 47–56 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  43. Gogate, V., Dechter, R.: A complete anytime algorithm for treewidth. In: Proceedings UAI 2004, Uncertainty in Artificial Intelligence (2004)

    Google Scholar 

  44. Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs. Academic Press, New York (1980)

    MATH  Google Scholar 

  45. Gustedt, J., Mæhle, O.A., Telle, J.A.: The treewidth of Java programs. In: Mount, D.M., Stein, C. (eds.) ALENEX 2002. LNCS, vol. 2409, pp. 86–97. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  46. Habib, M., Möhring, R.H.: Treewidth of cocomparability graphs and a new order-theoretic parameter. ORDER 1, 47–60 (1994)

    Article  Google Scholar 

  47. Heggernes, P., Telle, J.A., Villanger, Y.: Computing minimal triangulations in time O(n αlogn) = o(n 2.376). To appear in proceedings SODA 2005 (2005)

    Google Scholar 

  48. Heggernes, P., Villanger, Y.: Efficient implementation of a minimal triangulation algorithm. In: Möhring, R.H., Raman, R. (eds.) ESA 2002. LNCS, vol. 2461, pp. 550–561. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  49. Held, M., Karp, R.: A dynamic programming approach to sequencing problems. J. SIAM 10, 196–210 (1962)

    MATH  MathSciNet  Google Scholar 

  50. Hicks, I.V.: Graphs, branchwidth, and tangles! Oh my! Working paper, http://ie.tamu.edu/People/faculty/Hicks/default.htm

  51. Hicks, I.V.: Planar branch decompositions I: The ratcatcher. INFORMS Journal on Computing (to appear)

    Google Scholar 

  52. Hicks, I.V.: Planar branch decompositions II: The cycle method. INFORMS Journal on Computing (to appear)

    Google Scholar 

  53. Hicks, I.V.: Branch Decompositions and their Applications. Ph. d. thesis, Rice University, Houston, Texas (2000)

    Google Scholar 

  54. Hicks, I.V.: Branchwidth heuristics. Congressus Numerantium 159, 31–50 (2002)

    MATH  MathSciNet  Google Scholar 

  55. Hicks, I.V.: Branch decompositions and minor containment. Networks 43, 1–9 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  56. Kjærulff, U.: Optimal decomposition of probabilistic networks by simulated annealing. Statistics and Computing 2, 2–17 (1992)

    Article  Google Scholar 

  57. Kloks, T.: Treewidth. Computations and Approximations. In: Kloks, T. (ed.) Treewidth. LNCS, vol. 842. Springer, Heidelberg (1994)

    Chapter  Google Scholar 

  58. Kloks, T.: Treewidth of circle graphs. Int. J. Found. Computer Science 7, 111–120 (1996)

    Article  MATH  Google Scholar 

  59. Kloks, T., Kratsch, D.: Treewidth of chordal bipartite graphs. J. Algorithms 19, 266–281 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  60. Kloks, T., Kratsch, D., Spinrad, J.: On treewidth and minimum fill-in of asteroidal triple-free graphs. Theor. Comp. Sc. 175, 309–335 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  61. Koster, A.M.C.A.: Frequency Assignment - Models and Algorithms. PhD thesis, Univ. Maastricht, Maastricht, the Netherlands (1999)

    Google Scholar 

  62. Koster, A.M.C.A., Bodlaender, H.L., van Hoesel, S.P.M.: Treewidth: Computational experiments. In: Broersma, H., Faigle, U., Hurink, J., Pickl, S. (eds.) Electronic Notes in Discrete Mathematics, vol. 8. Elsevier Science Publishers, Amsterdam (2001)

    Google Scholar 

  63. Koster, A.M.C.A., van Hoesel, S.P.M., Kolen, A.W.J.: Solving partial constraint satisfaction problems with tree decomposition. Networks 40, 170–180 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  64. Lagergren, J.: Efficient parallel algorithms for graphs of bounded tree-width. J. Algorithms 20, 20–44 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  65. Lagergren, J., Arnborg, S.: Finding minimal forbidden minors using a finite congruence. In: Leach Albert, J., Monien, B., Rodríguez-Artalejo, M. (eds.) ICALP 1991. LNCS, vol. 510, pp. 532–543. Springer, Heidelberg (1991)

    Google Scholar 

  66. Larrañaga, P., Kuijpers, C.M.H., Poza, M., Murga, R.H.: Decomposing Bayesian networks: triangulation of the moral graph with genetic algorithms. Statistics and Computing (UK) 7(1), 19–34 (1997)

    Article  Google Scholar 

  67. Lauritzen, S.J., Spiegelhalter, D.J.: Local computations with probabilities on graphical structures and their application to expert systems. The Journal of the Royal Statistical Society. Series B (Methodological) 50, 157–224 (1988)

    MATH  MathSciNet  Google Scholar 

  68. Lick, D.R., White, A.T.: k-degenerate graphs. Canadian Journal of Mathematics 22, 1082–1096 (1970)

    Article  MATH  MathSciNet  Google Scholar 

  69. Lucena, B.: A new lower bound for tree-width using maximum cardinality search. SIAM J. Disc. Math. 16, 345–353 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  70. Matoušek, J., Thomas, R.: Algorithms for finding tree-decompositions of graphs. J. Algorithms 12, 1–22 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  71. Olesen, K.G., Madsen, A.L.: Maximal prime subgraph decomposition of Bayesian networks. IEEE Trans. on Systems, Man, and Cybernetics, Part B 32, 21–31 (2002)

    Article  Google Scholar 

  72. Parra, A., Scheffler, P.: Characterizations and algorithmic applications of chordal graph embeddings. Disc. Appl. Math. 79, 171–188 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  73. Perković, L., Reed, B.: An improved algorithm for finding tree decompositions of small width. In: Widmayer, P., Neyer, G., Eidenbenz, S. (eds.) WG 1999. LNCS, vol. 1665, pp. 148–154. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  74. Ramachandramurthi, S.: A lower bound for treewidth and its consequences. In: Mayr, E.W., Schmidt, G., Tinhofer, G. (eds.) WG 1994. LNCS, vol. 903, pp. 14–25. Springer, Heidelberg (1995)

    Google Scholar 

  75. Ramachandramurthi, S.: The structure and number of obstructions to treewidth. SIAM J. Disc. Math. 10, 146–157 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  76. Reed, B.: Finding approximate separators and computing tree-width quickly. In: Proceedings of the 24th Annual Symposium on Theory of Computing, pp. 221–228. ACM Press, New York (1992)

    Google Scholar 

  77. Robertson, N., Seymour, P.D.: Graph minors. II. Algorithmic aspects of tree-width. J. Algorithms 7, 309–322 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  78. Robertson, N., Seymour, P.D.: Graph minors. XIII. The disjoint paths problem. J. Comb. Theory Series B 63, 65–110 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  79. Röhrig, H.: Tree decomposition: A feasibility study. Master’s thesis, Max-Planck-Institut für Informatik, Saarbrücken, Germany (1998)

    Google Scholar 

  80. Rose, D.J., Tarjan, R.E., Lueker, G.S.: Algorithmic aspects of vertex elimination on graphs. SIAM J. Comput. 5, 266–283 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  81. Sanders, D.P.: On linear recognition of tree-width at most four. SIAM J. Disc. Math. 9(1), 101–117 (1996)

    Article  MATH  Google Scholar 

  82. Seymour, P.D., Thomas, R.: Call routing and the ratcatcher. Combinatorica 14(2), 217–241 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  83. Shoikhet, K., Geiger, D.: A practical algorithm for finding optimal triangulations. In: Proc. National Conference on Artificial Intelligence (AAAI 1997), pp. 185–190. Morgan Kaufmann, San Francisco (1997)

    Google Scholar 

  84. Szekeres, G., Wilf, H.S.: An inequality for the chromatic number of a graph. J. Comb. Theory 4, 1–3 (1968)

    Article  MathSciNet  Google Scholar 

  85. Tarjan, R.E., Yannakakis, M.: Simple linear time algorithms to test chordiality of graphs, test acyclicity of graphs, and selectively reduce acyclic hypergraphs. SIAM J. Comput. 13, 566–579 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  86. Thorup, M.: Structured programs have small tree-width and good register allocation. Information and Computation 142, 159–181 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  87. Treewidthlib (2004-03-31), http://www.cs.uu.nl/people/hansb/treewidthlib

  88. Valdes, J., Tarjan, R.E., Lawler, E.L.: The recognition of series parallel digraphs. SIAM J. Comput. 11, 298–313 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  89. van den Eijkhof, F., Bodlaender, H.L.: Safe reduction rules for weighted treewidth. In: Kučera, L. (ed.) WG 2002. LNCS, vol. 2573, pp. 176–185. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  90. Woeginger, G.J.: Exact algorithms for NP-hard problems: A survey. In: Jünger, M., Reinelt, G., Rinaldi, G. (eds.) Combinatorial Optimization - Eureka, You Shrink! LNCS, vol. 2570, pp. 185–207. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  91. Yamaguchi, A., Aoki, K.F., Mamitsuka, H.: Graph complexity of chemical compounds in biological pathways. Genome Informatics 14, 376–377 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bodlaender, H.L. (2005). Discovering Treewidth. In: Vojtáš, P., Bieliková, M., Charron-Bost, B., Sýkora, O. (eds) SOFSEM 2005: Theory and Practice of Computer Science. SOFSEM 2005. Lecture Notes in Computer Science, vol 3381. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30577-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30577-4_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-24302-1

  • Online ISBN: 978-3-540-30577-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics