Efficiently Constructible Huge Graphs That Preserve First Order Properties of Random Graphs

  • Moni Naor
  • Asaf Nussboim
  • Eran Tromer
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3378)


We construct efficiently computable sequences of random-looking graphs that preserve properties of the canonical random graphs G (2 n ,p(n)). We focus on first-order graph properties, namely properties that can be expressed by a formula φ in the language where variables stand for vertices and the only relations are equality and adjacency (e.g. having an isolated vertex is a first-order property ∃ x ∀ y(¬EDGE(x, y))). Random graphs are known to have remarkable structure w.r.t. first order properties, as indicated by the following 0/1 law: for a variety of choices of p(n), any fixed first-order property φ holds for G (2 n ,p(n)) with probability tending either to 0 or to 1 as n grows to infinity.

We first observe that similar 0/1 laws are satisfied by G (2 n ,p(n)) even w.r.t. sequences of formulas {φ n }n ∈ ℕ with bounded quantifier depth, \({\it depth}(\phi_{n}) \leq {\frac {1}{{\rm lg} (1/p(n))}}\). We also demonstrate that 0/1 laws do not hold for random graphs w.r.t. properties of significantly larger quantifier depth. For most choices of p(n), we present efficient constructions of huge graphs with edge density nearly p(n) that emulate G (2 n ,p(n)) by satisfying \({\it \Theta} ({\frac {1}{{\rm lg} (1/p(n))}})-0/1\) laws. We show both probabilistic constructions (which also have other properties such as K-wise independence and being computationally indistinguishable from G (N,p(n)) ), and deterministic constructions where for each graph size we provide a specific graph that captures the properties of G (2 n ,p(n)) for slightly smaller quantifier depths.


Random Graph Extension Property Edge Density Order Property Kolmogorov Complexity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Adleman, L.M., Pomerance, C., Rumely, R.S.: On Distinguishing Prime Numbers from Composite Numbers. Annals of Mathematics 117(1), 173–206 (1983)CrossRefMathSciNetGoogle Scholar
  2. 2.
    Alon, N., Spencer, J.H.: The Probabilistic Method. John Wiley and Sons, Chichester (1992)zbMATHGoogle Scholar
  3. 3.
    Babai, L.: Character Sums, Weil’s Estimates, and Paradoxical Tournaments, lecture notes,
  4. 4.
    Bollobás, B.: Random Graphs. Academic Press, London (1985)Google Scholar
  5. 5.
    Bollobás, B., Erdös, P.: Cliques in Random Graphs. Cambridge Philosophical Society Mathematical Proc. 80, 419–427 (1976)zbMATHCrossRefGoogle Scholar
  6. 6.
    Chung, F.R.K., Graham, R.L., Wilson, R.M.: Quasi-random graphs. Combinatorica 9, 345–362 (1989)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Ehrenfeucht, A.: An Application of Games to the Completeness Problem for Formalized Theories. Fundamenta Mathematicae 49, 129–141 (1961)zbMATHMathSciNetGoogle Scholar
  8. 8.
    Erdös, P., Pomerance, C., Schmutz, E.: Carmichael’s Lambda Function. Acta Arithmetica 58, 363–385 (1991)zbMATHMathSciNetGoogle Scholar
  9. 9.
    Fagin, R.: Probabilities in Finite Models. Journal of Symbolic Logic 41, 50–58 (1969)MathSciNetGoogle Scholar
  10. 10.
    Gao, S., Panario, D.: Tests and Constructions of Irreducible Polynomials Over Finite Fields. In: Cucker, F., Shub, M. (eds.) Foundations of Computational Mathematics, pp. 346–361. Springer, Heidelberg (1997)Google Scholar
  11. 11.
    Glebskii, Y.V., Kogan, D.I., Liagonkii, M.I., Talanov, V.A.: Range and Degree of Realizability of Formulas in the Restricted Predicate Calculus. Cybernetics 5, 142–154 (1976)CrossRefGoogle Scholar
  12. 12.
    Goldreich, O., Goldwasser, S., Micali, S.: How to Construct Random Functions. Journal of the ACM 33(4), 276–288 (1985)Google Scholar
  13. 13.
    Goldreich, O., Goldwasser, S., Nussboim, A.: On the Implementation of Huge Random Objects. In: Proc. 44th IEEE Symposium on Foundations of Computer Science, pp. 68–79 (2003)Google Scholar
  14. 14.
    Graham, R.L., Spencer, J.H.: A Constructive Solution to a Tournament Problem. Canadian Math Bulletin 14, 45–48 (1971)zbMATHMathSciNetCrossRefGoogle Scholar
  15. 15.
    Håstad, J., Impagliazzo, R., Levin, L.A., Luby, M.: A Pseudo-Random Generator from any One-Way Function. SIAM Journal on Computing 28(4), 1364–1396 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Krivelevich, M., Sudakov, B.: Pseudo-random Graphs. (preprint),
  17. 17.
    Nussboim, A.: Huge Pseudo-Random Graphs that Preserve Global Properties of Random Graphs, M.Sc. Thesis, Advisor: S. Goldwasser, Weizmann Institute of Science (2003),
  18. 18.
    Pohlig, S.C., Hellman, M.E.: An Improved Algorithm for Computing Logarithms Over GF(p) and Its Cryptographic Significance. IEEE Transactions on Information Theory IT-24, 106–110 (1978)CrossRefMathSciNetGoogle Scholar
  19. 19.
    Spencer, J.H.: The Strange Logic of Random Graphs. Springer, Heidelberg (2001)zbMATHGoogle Scholar
  20. 20.
    Shoup, V.: New Algorithms for Finding Irreducible Polynomials over Finite Fields. Mathematics of Computation 54, 435–447 (1990)zbMATHMathSciNetCrossRefGoogle Scholar
  21. 21.
    Shoup, V.: Searching for primitive roots in finite fields. Mathematics of Computation 58, 369–380 (1992)zbMATHMathSciNetCrossRefGoogle Scholar
  22. 22.
    Spencer, J.H., Shelah, S.: Zero-One Laws for Sparse Random Graphs. Journal of the American Mathematical Society 1, 97–115 (1988)zbMATHMathSciNetCrossRefGoogle Scholar
  23. 23.
    Thomason, A.: Pseudo-random graphs. In: Proceedings of Random Graphs, Annals of Discrete Mathematics, vol. 33, pp. 307–331 (1987)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Moni Naor
    • 1
  • Asaf Nussboim
    • 1
  • Eran Tromer
    • 1
  1. 1.Department of Computer Science and Applied MathematicsWeizmann Institute of ScienceRehovotIsrael

Personalised recommendations