A New Cramer-Shoup Like Methodology for Group Based Provably Secure Encryption Schemes

  • María Isabel González Vasco
  • Consuelo Martínez
  • Rainer Steinwandt
  • Jorge L. Villar
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3378)


A theoretical framework for the design of—in the sense of IND-CCA—provably secure public key cryptosystems taking non-abelian groups as a base is given. Our construction is inspired by Cramer and Shoup’s general framework for developing secure encryption schemes from certain language membership problems; thus all our proofs are in the standard model, without any idealization assumptions. The skeleton we present is conceived as a guiding tool towards the construction of secure concrete schemes from finite non-abelian groups (although it is possible to use it also in conjunction with finite abelian groups).


Automorphism Group Encryption Scheme Braid Group Cryptographic Primitive Hash Family 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Anshel, I., Anshel, M., Fisher, B., Goldfeld, D.: New key agreement protocols in braid group cryptography. In: Naccache, D. (ed.) CT-RSA 2001. LNCS, vol. 2020, pp. 13–27. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  2. 2.
    Anshel, I., Anshel, M., Goldfeld, D.: An algebraic method for public-key cryptography. Mathematical Research Letters 6, 1–5 (1999)MathSciNetGoogle Scholar
  3. 3.
    Bellare, M., Desai, A., Pointcheval, D., Rogaway, P.: Relations among notions of security for public-key encryption schemes. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 26–45. Springer, Heidelberg (1998)Google Scholar
  4. 4.
    Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing efficient protocols. In: ACM Conference on Computer and Communications Security, pp. 62–73 (1993)Google Scholar
  5. 5.
    Bohli, J.-M., González Vasco, M.I., Martínez, C., Steinwandt, R.: Weak Keys in MST 1. Designs, Codes and Cryptography (to appear)Google Scholar
  6. 6.
    Cheon, J.H., Jun, B.: Diffie-Hellman Conjugacy Problem on Braids. Cryptology ePrint Archive: Report 2003/019 (2003), Electronically available at
  7. 7.
    Cramer, R., Shoup, V.: Universal Hash Proofs and a Paradigm for Adaptive Chosen Ciphertext Secure Public-Key Encryption. Cryptology ePrint Archive: Report 2001/085 (2001), Electronically available at
  8. 8.
    Cramer, R., Shoup, V.: Universal hash proofs and a paradigm for adaptive chosen ciphertext secure public-key encryption. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 45–64. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  9. 9.
    Dolev, D., Dwork, C., Naor, M.: Non-malleable cryptography. SIAM Journal on Computing 30, 391–437 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Fiat, A., Shamir, A.: How to prove yourself: Practical solutions to identification and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 186–194. Springer, Heidelberg (1987)Google Scholar
  11. 11.
    Garzon, M., Zalcstein, Y.: The Complexity of Grigorchuk groups with application to cryptography. Theoretical Computer Science 88, 83–98 (1991)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    González Vasco, M.I., Martínez, C., Steinwandt, R.: Towards a Uniform Description of Several Group Based Cryptographic Primitives. Designs, Codes and Cryptography 33, 215–226 (2004)zbMATHCrossRefGoogle Scholar
  13. 13.
    González Vasco, M.I., Steinwandt, R.: Reaction Attacks on Public Key Cryptosystems Based on the Word Problem. Applicable Algebra in Engineering, Communication and Computing 14, 335–340 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Hofheinz, D., Steinwandt, R.: A practical attack on some braid group based cryptographic primitives. In: Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 187–198. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  15. 15.
    Ko, K.H., Lee, S.J., Cheon, J.H., Han, J.W., Kang, J., Park, C.: New public-key cryptosystem using braid groups. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 166–183. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  16. 16.
    Lee, H.K., Lee, H.S., Lee, Y.R.: An Authenticated Group Key Agreement Protocol on Braid Groups. Cryptology ePrint Archive: Report 2003/018 (2003), Electronically available at
  17. 17.
    Magliveras, S.S., Memon, N.D.: Algebraic properties of cryptosystem PGM. Journal of Cryptology 5, 167–183 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Magliveras, S.S., Stinson, D.R., Trung, T.: New approaches to designing public key cryptosystems using one-way functions and trap-doors in finite groups. Journal of Cryptology 15, 285–297 (2002)zbMATHCrossRefGoogle Scholar
  19. 19.
    Naor, M., Yung, M.: Public-key Cryptosystems Provably Secure against Chosen Ciphertext Attacks. In: Proceedings of the twenty-second annual ACM symposium on Theory of computing, pp. 427–437. ACM Press, New York (1990)CrossRefGoogle Scholar
  20. 20.
    Rackoff, C., Simon, D.R.: Non-interactive zero-knowledge proof of knowledge and chosen ciphertext attack. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 433–444. Springer, Heidelberg (1992)Google Scholar
  21. 21.
    Shpilrain, V.: Assessing security of some group based cryptosystems. Cryptology ePrint Archive: Report 2003/123 (2003), Electronically available at
  22. 22.
    Wagner, N.R., Magyarik, M.R.: A public key cryptosystem based on the word problem. In: Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 19–36. Springer, Heidelberg (1985)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • María Isabel González Vasco
    • 1
  • Consuelo Martínez
    • 2
  • Rainer Steinwandt
    • 3
  • Jorge L. Villar
    • 4
  1. 1.Área de Matemática AplicadaUniversidad Rey Juan CarlosMadridSpain
  2. 2.Departamento de MatemáticasUniversidad de OviedoOviedoSpain
  3. 3.IAKS, Arbeitsgruppe Systemsicherheit Prof. Beth, Fakultät für InformatikUniversität KarlsruheKarlsruheGermany
  4. 4.Departamento de Matemática Aplicada IVUniversitat Politécnica de CatalunyaBarcelonaSpain

Personalised recommendations