Advertisement

Public-Key Steganography with Active Attacks

  • Michael Backes
  • Christian Cachin
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3378)

Abstract

A complexity-theoretic model for public-key steganography with active attacks is introduced. The notion of steganographic security against adaptive chosen-covertext attacks (SS-CCA) and a relaxation called steganographic security against publicly-detectable replayable adaptive chosen-covertext attacks (SS-PDR-CCA) are formalized. These notions are closely related to CCA-security and PDR-CCA-security for public-key cryptosystems. In particular, it is shown that any SS-(PDR-)CCA stegosystem is a (PDR-)CCA-secure public-key cryptosystem and that an SS-PDR-CCA stegosystem for any covertext distribution with sufficiently large min-entropy can be realized from any PDR-CCA-secure public-key cryptosystem with pseudorandom ciphertexts.

Keywords

Security Parameter Active Attack Negligible Probability Decryption Oracle Passive Adversary 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    An, J.H., Dodis, Y., Rabin, T.: On the security of joint signature and encryption. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, p. 83. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  2. 2.
    Anderson, R.J., Petitcolas, F.A.: On the limits of steganography. IEEE Journal on Selected Areas in Communications 16 (May 1998)Google Scholar
  3. 3.
    Bellare, M., Desai, A., Pointcheval, D., Rogaway, P.: Relations among notions of security for public-key encryption schemes. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, p. 26. Springer, Heidelberg (1998)Google Scholar
  4. 4.
    Cachin, C.: An information-theoretic model for steganography. Information and Computation 192, 41–56 (2004); Aucsmith, D. (ed.) IH 1998. LNCS, vol. 1525, p. 306. Springer, Heidelberg (1998)Google Scholar
  5. 5.
    Canetti, R., Krawczyk, H., Nielsen, J.: Relaxing chosen-ciphertext security. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 565–582. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  6. 6.
    Cover, T.M., Thomas, J.A.: Elements of Information Theory. Wiley, Chichester (1991)zbMATHCrossRefGoogle Scholar
  7. 7.
    Cramer, R., Shoup, V.: A practical public key cryptosystem provably secure against adaptive chosen ciphertext attack. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, p. 13. Springer, Heidelberg (1998)Google Scholar
  8. 8.
    Craver, S.: On public-key steganography in the presence of an active warden. In: Aucsmith, D. (ed.) IH 1998. LNCS, vol. 1525, p. 355. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  9. 9.
    Dedić, N., Itkis, G., Reyzin, L., Russell, S.: Upper and lower bounds on black-box steganography. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 227–244. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  10. 10.
    Dolev, D., Dwork, C., Naor, M.: Non-malleable cryptography. SIAM Journal on Computing 30(2), 391–437 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Goldwasser, S., Micali, S.: Probabilistic encryption. Journal of Computer and System Sciences 28, 270–299 (1984)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Hopper, N.J., Langford, J., von Ahn, L.: Provably secure steganography. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, p. 77. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  13. 13.
    Lindell, Y.: Personal communication (January 2004)Google Scholar
  14. 14.
    Luby, M.: Pseudorandomness and Cryptographic Applications. Princeton University Press, Princeton (1996)zbMATHGoogle Scholar
  15. 15.
    Mittelholzer, T.: An information-theoretic approach to steganography and watermarking. In: Pfitzmann, A. (ed.) IH 1999. LNCS, vol. 1768, pp. 1–16. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  16. 16.
    Rackoff, C., Simon, D.R.: Non-interactive zero-knowledge proof of knowledge and chosen ciphertext attack. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 433–444. Springer, Heidelberg (1992)Google Scholar
  17. 17.
    Reyzin, L., Russell, S.: Simple stateless steganography. Cryptology ePrint Archive, Report 2003/093 (2003), http://eprint.iacr.org/
  18. 18.
    Sahai, A.: Non-malleable non-interactive zero knowledge and adaptive chosen-ciphertext security. In: Proc. 40th IEEE Symposium on Foundations of Computer Science (FOCS), pp. 543–553 (1999)Google Scholar
  19. 19.
    Shoup, V.: A proposal for an ISO standard for public key encryption. Cryptology ePrint Archive, Report 2001/112 (2001), http://eprint.iacr.org/
  20. 20.
    Shoup, V.: OAEP reconsidered. Journal of Cryptology 15(4), 223–249 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Simmons, G.J.: The prisoners’ problem and the subliminal channel. In: Chaum, D. (ed.) Advances in Cryptology: Proceedings of Crypto 1983, pp. 51–67. Plenum Press (1984)Google Scholar
  22. 22.
    von Ahn, L., Hopper, N.J.: Public-key steganography. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 322–339. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  23. 23.
    Wegman, M.N., Carter, J.L.: New hash functions and their use in authentication and set equality. Journal of Computer and System Sciences 22, 265–279 (1981)zbMATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Zöllner, J., Federrath, H., Klimant, H., Pfitzmann, A., Piotraschke, R., Westfeld, A., Wicke, G., Wolf, G.: Modeling the security of steganographic systems. In: Aucsmith, D. (ed.) IH 1998. LNCS, vol. 1525, pp. 344–354. Springer, Heidelberg (1998)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Michael Backes
    • 1
  • Christian Cachin
    • 1
  1. 1.IBM Zurich Research LaboratoryRüschlikonSwitzerland

Personalised recommendations