Skip to main content

A Systematic Evaluation of Compact Hardware Implementations for the Rijndael S-Box

  • Conference paper
Topics in Cryptology – CT-RSA 2005 (CT-RSA 2005)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 3376))

Included in the following conference series:

Abstract

This work proposes a compact implementation of the AES S-box using composite field arithmetic in GF(((22)2)2). It describes a systematic exploration of different choices for the irreducible polynomials that generate the extension fields. It also examines all possible transformation matrices that map one field representation to another. We show that the area of Satoh’s S-box, which is the most compact to our knowledge, is at least 5% away from an optimal solution. We implemented this optimal solution and Satoh’s design using a 0.18 μm standard cell library.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. FIPS Pub. 197: Specification for the AES (November 2001), http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf

  2. Alam, M., Badawy, W., Jullien, G.: A novel pipelined threads architecture for aes encryption algorithm. In: Schulte, M., Bhattacharyya, S., Burgess, N., Schreiber, R. (eds.) Proceedings of the IEEE International Conference on Application-Specific System, Architectures, and Processors (ASAP), San Jose, CA, USA, July 17-19, pp. 296–302. IEEE Computer Society Press, Los Alamitos (2002)

    Chapter  Google Scholar 

  3. Chodowiec, P., Gaj, K.: Very compact FPGA implementation of the AES algorithm. In: Walter, C.D., Koç, Ç.K., Paar, C. (eds.) CHES 2003. LNCS, vol. 2779, pp. 319–333. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  4. Daemen, J., Rijmen, V.: AES proposal: Rijndael (September 2001), http://csrc.nist.gov/CryptoToolkit/aes/rijndael/Rijndael.pdf

  5. Daemen, J., Rijmen, V.: The design of Rijndael: AES–The Advanced Encryption Standard. Springer, Heidelberg (2002)

    MATH  Google Scholar 

  6. Daemen, J., Rijmen, V.: Security of a wide trail design. In: Menezes, A., Sarkar, P. (eds.) INDOCRYPT 2002. LNCS, vol. 2551, pp. 1–11. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  7. Fischer, V., Drutarovský, M.: Two methods of Rijndael implementation in reconfigurable hardware. In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp. 77–92. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  8. Gaj, K., Chodowiec, P.: Fast implementation and fair comparison of the final candidates for advanced encryption standard using field programmable gate arrays. In: Naccache, D. (ed.) CT-RSA 2001. LNCS, vol. 2020, p. 84. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  9. Guajardo, J., Paar, C.: Efficient algorithms for elliptic curve cryptosystems. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 342–356. Springer, Heidelberg (1997)

    Google Scholar 

  10. Jdrvinen, K., Tommiska, M., Skyttd, J.: A fully pipelined memoryless 17.8 Gbps AES-128 encyptor. In: Proceedings of the 11th ACM International Symposium on Field Programmable Gate Arrays (FPGA), Monterey, CA, USA (February 23-25, 2003)

    Google Scholar 

  11. Kuo, H., Verbauwhede, I.: Architectural optimization for a 1.82Gbits/sec VLSI implementation of the AES rijndael algorithm. In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp. 51–64. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  12. Lu, C.-C., Tseng, S.-Y.: Integrated design of AES (Advanced Encryption Standard) encrypter and decrypter. In: Schulte, M., Bhattacharyya, S., Burgess, N., Schreiber, R. (eds.) Proceedings of the IEEE International Conference on Application-Specific Systems, Architectures, and Processors (ASAP), San Jose, CA, USA, July 17-19, pp. 277–285. IEEE Computer Society Press, Los Alamitos (2002)

    Google Scholar 

  13. Macchetti, M., Bertoni, G.: Hardware implementation of the Rijndael Sbox: A case study. ST Journal of system research, 84–91 (2002)

    Google Scholar 

  14. McLoone, M., McCanny, J.V.: High performance single-chip FPGA Rijndael algorithm implementations. In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp. 65–76. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  15. Paar, C.: Efficient VLSI Architectures for Bit-Parallel Computation in Galois Fields. PhD thesis, Institute for Experimental Mathematics, University of Essen, Germany (1994)

    Google Scholar 

  16. Rudra, A., Dubey, P.K., Jutla, C.S., Kumar, V., Rao, J.R., Rohatgi, P.: Efficient Rijndael encryption implementation with composite field arithmetic. In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp. 171–184. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  17. Satoh, A., Morioka, S., Takano, K., Munetoh, S.: A compact Rijndael hardware architecture with S-Box optimization. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 239–254. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  18. Standaert, F.-X., Rouvroy, G., Quisquater, J.-J., Legat, J.-D.: Efficient implemen ation of rijndael encryption in reconfigurable hardware: Improvements and design tradeoffs. In: Walter, C.D., Koç, Ç.K., Paar, C. (eds.) CHES 2003. LNCS, vol. 2779, pp. 334–350. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  19. Verbauwhede, I., Schaumont, P., Kuo, H.: Design and performance testing of a2.29-Gb/s Rijndael processor. IEEE Journal of Solid-State Circuits 38(3), 569–572 (2003)

    Article  Google Scholar 

  20. Wolkerstorfer, J.: Dual-field arithmetic unit for GF(p) and GF(2m). In: Kaliski Jr., B.S., Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 500–514. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  21. Wolkerstorfer, J., Oswald, E., Lamberger, M.: An ASIC implementation of the AES S-Boxes. In: Preneel, B. (ed.) CT-RSA 2002. LNCS, vol. 2271, pp. 67–78. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  22. Wu, S.-Y., Lu, S.-C., Laih, C.S.: Design of AES based on dual cipher and composite field. In: Okamoto, T. (ed.) CT-RSA 2004. LNCS, vol. 2964, pp. 25–38. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mentens, N., Batina, L., Preneel, B., Verbauwhede, I. (2005). A Systematic Evaluation of Compact Hardware Implementations for the Rijndael S-Box. In: Menezes, A. (eds) Topics in Cryptology – CT-RSA 2005. CT-RSA 2005. Lecture Notes in Computer Science, vol 3376. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30574-3_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30574-3_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-24399-1

  • Online ISBN: 978-3-540-30574-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics