Skip to main content

Nonmaterialized Motion Information in Transport Networks

  • Conference paper
Database Theory - ICDT 2005 (ICDT 2005)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3363))

Included in the following conference series:

Abstract

The traditional way of representing motion in 3D space-time uses a trajectory, i.e. a sequence of (x,y,t) points. Such a trajectory may be produced by periodic sampling of a Global Positioning System (GPS) receiver. The are two problems with this representation of motion. First, imprecision due to errors (e.g. GPS receivers often produce off-the-road locations), and second, space complexity due to a large number of samplings. We examine an alternative representation, called a nonmaterialized trajectory, which addresses both problems by taking advantage of the a priori knowledge that the motion occurs on a transport network.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Special issue on data reduction techniques. IEEE Data Engineering 20(4) (1998)

    Google Scholar 

  2. Alt, H., Guibas, L.J.: Discrete geometric shapes: Matching, interpolation, and approximation A survey. Technical Report B 96-11, Institut für Informatik, Freie Universität Berlin (1996)

    Google Scholar 

  3. Cao, H., Wolfson, O., Trajcevski, G.: Spatiotemporal data reduction with deterministic error bounds. In: DIALM-POMC 2003, pp. 33–42 (2003)

    Google Scholar 

  4. Chakrabarti, K., Garofalakis, M., Rastogi, R., Shim, K.: Approximate query processing using wavelets. In: VLDB 2000 (Septermber 2000)

    Google Scholar 

  5. Chen, C., Thakkar, S., Knoblock, C., Shahabi, C.: Automatically annotating and integrating spatial datasets. In: Hadzilacos, T., Manolopoulos, Y., Roddick, J., Theodoridis, Y. (eds.) SSTD 2003. LNCS, vol. 2750. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  6. Chen, Z., Gehrke, J., Korn, F.: Query optimization in compressed database systems. In: ACM SIGMOD 2001, pp. 271–282. ACM Press, New York (2001)

    Chapter  Google Scholar 

  7. Florizzi, L., Guting, R.H., Nardelli, E., Schneider, M.: A data model and data structures for moving objects databases. Technical Report 260-10, Fern-Universität Hagen (1999)

    Google Scholar 

  8. Frentzos, E.: Indexing objects moving on fixed networks. In: Hadzilacos, T., Manolopoulos, Y., Roddick, J., Theodoridis, Y. (eds.) SSTD 2003. LNCS, vol. 2750. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  9. Ghosh, S.K.: Computing the visibility polygon from a convex set and related problem. Journal of Algorithms 12, 75–95 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  10. Gibbons, P.B., Matias, Y., Poosala, V.: Fast incremental maintenance of approximate histograms. In: VLDB (1997)

    Google Scholar 

  11. Greenfeld, J.S.: Matching gps observations to locations on a digital map. In: The 81th Annual Meeting of the Transportation Research Board, Washington D.C. (2002)

    Google Scholar 

  12. Guibas, L.J., Hershberger, J.E., Mitchell, J.S.B., Snoeyink, J.S.: Approximating polygons and subdivisions with minimum link paths. In: ISAAC 1991 (1991)

    Google Scholar 

  13. Meratnia, N., de By, R.A.: Spatiotemporal compression techniques for moving point objects. In: Bertino, E., Christodoulakis, S., Plexousakis, D., Christophides, V., Koubarakis, M., Böhm, K., Ferrari, E. (eds.) EDBT 2004. LNCS, vol. 2992, pp. 765–782. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  14. Pfoser, D., Jensen, C.S.: Indexing of network constrained moving objects. In: ACM GIS, pp. 25–32. ACM Press, New York (2003)

    Google Scholar 

  15. Thrun, S.: Robotic mapping: a survey. In: Exploring artificial intelligence in the new millennium, pp. 1–35. Morgan Kaufmann Publishers Inc., San Francisco (2003)

    Google Scholar 

  16. White, C.E., Bernstein, D., Kornhauser, A.L.: Some map matching algorithms for personal navigation assistants. Transportation Research Part C 8, 91–108 (2000)

    Article  Google Scholar 

  17. Yin, H., Wolfson, O.: A weight-based map matching method in moving objects databases. In: SSTDM (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cao, H., Wolfson, O. (2004). Nonmaterialized Motion Information in Transport Networks. In: Eiter, T., Libkin, L. (eds) Database Theory - ICDT 2005. ICDT 2005. Lecture Notes in Computer Science, vol 3363. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30570-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30570-5_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-24288-8

  • Online ISBN: 978-3-540-30570-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics