Advertisement

An Overview of Physicomimetics

  • William M. Spears
  • Diana F. Spears
  • Rodney Heil
  • Wesley Kerr
  • Suranga Hettiarachchi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3342)

Abstract

This paper provides an overview of our framework, called physicomimetics, for the distributed control of swarms of robots. We focus on robotic behaviors that are similar to those shown by solids, liquids, and gases. Solid formations are useful for distributed sensing tasks, while liquids are for obstacle avoidance tasks. Gases are handy for coverage tasks, such as surveillance and sweeping. Theoretical analyses are provided that allow us to reliably control these behaviors. Finally, our implementation on seven robots is summarized.

Keywords

Mobile Robot Obstacle Avoidance Traversal Speed Expansion Property Initial Deployment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Spears, W., Gordon, D.: Using artificial physics to control agents. In: IEEE International Conference on Information, Intelligence, and Systems, Washington, DC, pp. 281–288 (1999)Google Scholar
  2. 2.
    Howard, A., Matarić, M., Sukhatme, G.: Mobile sensor network deployment using potential fields: A distributed, scalable solution to the area coverage problem. In: Sixth International Symposium on Distributed Autonomous Robotics Systems, Fukuoka, Japan, pp. 299–308. ACM, New York (2002)Google Scholar
  3. 3.
    Gordon-Spears, D., Spears, W.: Analysis of a phase transition in a physics-based multiagent system. In: Hinchey, M.G., Rash, J.L., Truszkowski, W.F., Rouff, C.A., Gordon-Spears, D.F. (eds.) FAABS 2002. LNCS (LNAI), vol. 2699, pp. 193–207. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  4. 4.
    Kellogg, J., Bovais, C., Foch, R., McFarlane, H., Sullivan, C., Dahlburg, J., Gardner, J., Ramamurti, R., Gordon-Spears, D., Hartley, R., Kamgar-Parsi, B., Pipitone, F., Spears, W., Sciambi, A., Srull, D.: The NRL micro tactical expendable (MITE) air vehicle. The Aeronautical Journal 106, 431–441 (2002)Google Scholar
  5. 5.
    Zarzhitsky, D., Spears, D., Thayer, D., Spears, W.: Agent-based chemical plume tracing using fluid dynamics. In: Hinchey, M., Rash, J., Truszkowski, W., Rouff, C. (eds.) Formal Approaches to Agent-Based Systems, Greenbelt, MD. Springer, Heidelberg (2005)Google Scholar
  6. 6.
    Spears, W., Spears, D., Hamann, J., Heil, R.: Distributed, physics-based control of swarms of vehicles. Autonomous Robots 17 (2004)Google Scholar
  7. 7.
    Spears, W., Spears, D.: A formal analysis of potential energy in a multiagent system. In: Hinchey, M., Rash, J., Truszkowski, W., Rouff, C. (eds.) Formal Approaches to Agent-Based Systems, Greenbelt, MD. Springer, Heidelberg (2005)Google Scholar
  8. 8.
    Khatib, O.: Real-time obstacle avoidance for manipulators and mobile robots. International Journal of Robotics Research 5, 90–98 (1986)Google Scholar
  9. 9.
    Kerr, W., Spears, D., Spears, W., Thayer, D.: Two formal fluids models for multiagent sweeping and obstacle avoidance. In: Hinchey, M., Rash, J., Truszkowski, W., Rouff, C. (eds.) Formal Approaches to Agent-Based Systems, Greenbelt, MD. Springer, Heidelberg (2005)Google Scholar
  10. 10.
    Kerr, W., Spears, D., Spears, W., Thayer, D.: Swarm coverage through a partially obstructed corridor (in preparation)Google Scholar
  11. 11.
    Spears, W., Heil, R., Spears, D., Zarzhitsky, D.: Physicomimetics for mobile robot formations. In: International Conference on Autonomous Agents and Multi Agent Systems (2004)Google Scholar
  12. 12.
    Gordon, D., Spears, W., Sokolsky, O., Lee, I.: Distributed spatial control, global monitoring and steering of mobile physical agents. In: IEEE International Conference on Information, Intelligence, and Systems, Washington, DC, pp. 681–688 (1999)Google Scholar
  13. 13.
    Navarro-Serment, L., Paredis, Khosla, P.: A beacon system for the localization of distributed robotic teams. In: International Conference on Field and Service Robots, Pittsburgh, PA, pp. 232–237 (1999)Google Scholar
  14. 14.
    Fax, J., Murray, R.: Information flow and cooperative control of vehicle formations. In: IFAC World Congress, Barcelona, Spain (2002)Google Scholar
  15. 15.
    Olfati-Saber, R., Murray, R.: Distributed cooperative control of multiple vehicle formations using structural potential functions. In: IFAC World Congress, Barcelona, Spain (2002)Google Scholar
  16. 16.
    Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm Intelligence: From Natural to Artificial Systems. Santa Fe Institute Studies in the Sciences of Complexity. Oxford University Press, Oxford (1999)zbMATHGoogle Scholar
  17. 17.
    Beni., G., Hackwood, S.: Stationary waves in cyclic swarms. Intelligent Control, 234–242 (1992)Google Scholar
  18. 18.
    Beni, G., Wang, J.: Swarm intelligence. In: Proceedings of the Seventh Annual Meeting of the Robotics Society of Japan, Tokyo, Japan, pp. 425–428 (1989)Google Scholar
  19. 19.
    Balch, T., Arkin, R.: Behavior-based formation control for multi-robot teams. IEEE Transactions on Robotics and Automata 14, 1–15 (1998)CrossRefGoogle Scholar
  20. 20.
    Balch, T., Hybinette, M.: Social potentials for scalable multirobot formations. IEEE Transactions on Robotics and Automata (2000)Google Scholar
  21. 21.
    Matarić, M.: Designing and understanding adaptive group behavior. Technical report, CS Dept, Brandeis Univ (1995)Google Scholar
  22. 22.
    Payton, D., Daily, M., Hoff, B., Howard, M., Lee, C.: Pheromone robotics. In: SPIE Symposium on Intelligence Systems and Manufacturing, Boston, MA (2000)Google Scholar
  23. 23.
    Wu, A., Schultz, A., Agah, A.: Evolving control for distributed micro air vehicles. In: IEEE Conference on Computational Intelligence in Robotics and Automation, Belgium, pp. 174–179 (1999)Google Scholar
  24. 24.
    Desai, J., Ostrowski, J., Kumar, V.: Modeling and control of formations of nonholonomic mobile robots. IEEE Transactions on Robotics and Automation 17, 905–908 (2001)CrossRefGoogle Scholar
  25. 25.
    Vail, D., Veloso, M.: Multi-robot dynamic role assignment and coordination through shared potential fields. In: Schultz, A., Parker, L., Schneider, F. (eds.) Multi-Robot Systems, Hingham, MA, pp. 87–98. Kluwer, Dordrecht (2003)Google Scholar
  26. 26.
    Reif, J., Wang, H.: Social potential fields: A distributed behavioral control for autonomous robots. Robotics and Autonomous Systems 27(3), 171–194 (1999)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • William M. Spears
    • 1
  • Diana F. Spears
    • 1
  • Rodney Heil
    • 1
  • Wesley Kerr
    • 1
  • Suranga Hettiarachchi
    • 1
  1. 1.Computer Science DepartmentUniversity of WyomingLaramieUSA

Personalised recommendations