The I-SWARM Project: Intelligent Small World Autonomous Robots for Micro-manipulation

  • Jörg Seyfried
  • Marc Szymanski
  • Natalie Bender
  • Ramon Estaña
  • Michael Thiel
  • Heinz Wörn
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3342)


This paper presents the visions and initial results of the I-SWARM project funded by the European Commission. The goal of the project is to build the first very large-scale artificial swarm (VLSAS) with a swarm size of up to 1,000 micro-robots with a planned size of 2×2×1 mm3. First, the motivation for such a swarm is described and then first considerations and issues arising from the robots’ size resembling “artificial ants” and the MST approach taken to realize that size are given. The paper will conclude with a list of possible scenarios inspired by biology for such a robot swarm.


Microbial Fuel Cell Swarm Intelligence Swarm Robotic Robot Swarm Honeybee Queen 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Seyfried, J., Fatikow, S., Fahlbusch, S., Buerkle, A., Schmoeckel, F.: Manipulating in the Micro World: Mobile Micro Robots and their Applications. In: Int. Symposium on Robotics (ISR), Montreal, Canada, May 14-17 (2000)Google Scholar
  2. 2.
    Almansa-Martin, A.: Micro and nanorobotics – present and future. In: Proc. of the 35th International Symposium on Robotics, Paris, March 23-26 (2004)Google Scholar
  3. 3.
    Martel, S., et al.: Three-Legged Wireless Miniature Robots for Mass-Scale Operations at the Sub-Atomic Scale. In: Proc. 2001 IEEE Int. Conf. Robotics & Automation, ICRA 2001, Seoul, Korea, May 21-26, pp. 3423–3428 (2001)Google Scholar
  4. 4.
    Pister, K.S.J., Kahn, J.M., Boser, B.E.: Smart Dust: Wireless Networks of Millimeter-Scale Sensor Nodes, Highlight Article in 1999 Electronics Research Laboratory Research Summary (1999)Google Scholar
  5. 5.
    Hollar, S., Flynn, A., Bellew, C., Pister, K.S.J.: Solar Powered 10 mg Silicon Robot. In: MEMS 2003, Kyoto, Japan, January 19-23 (2003)Google Scholar
  6. 6.
    Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm Intelligence: From Natural to Artificial Systems. Oxford University Press, Oxford (1999)zbMATHGoogle Scholar
  7. 7.
    Kube, C.R., Zhang, H.: Collective Robotics: From Social Insects to Robots. Adaptive Behaviour 2(2), 189–218 (1993)CrossRefGoogle Scholar
  8. 8.
    Camazine, S., Deneubourg, J.-L., Franks, N.R., Sneyd, J., Theraulaz, G., Bonabeau, E.: Self-Organization in biological systems. Princeton University Press, Princeton (2001)Google Scholar
  9. 9.
    Hirsh, A.E., Gordon, D.M.: Distributed problem solving in social insects. Annals of Mathematics and Artificial Intelligence 31, 199–221 (2001)CrossRefGoogle Scholar
  10. 10.
    Bar-Cohen, Y. (Book Editor and author/co-author of 5 chapters), Electroactive Polymer (EAP) Actuators as Artificial Muscles – Reality, Potential and Challenges, Vol. PM98, 671 pages SPIE Press, (March 2001) ISBN 0-8194-4054-XGoogle Scholar
  11. 11.
    Ieropoulos, I., Greenman, J., Melhuish, C.: Imitating Metabolism: Energy Autonomy in Biologically Inspired Robotics. In: Proceedings of the AISB 2003, Second International Symposium on Imitation in Animals and Artifacts, SSAISB, Aberystwyth, Wales, pp. 191–194 (2003)Google Scholar
  12. 12.
    Melhuish, C., Greenman, J., Bartholomew, K., Ieropoulos, I., Horsfield, I.: Towards Robot Energetic Autonomy using Microbial Fuel Cells. J. Electrochimica Acta (special edition) (in press)Google Scholar
  13. 13.
    Woern, H., Seyfried, J., Fahlbusch, S., Buerkle, A., Schmoeckel, F.: Flexible Microrobots for Micro Assembly Tasks International Symposium on Micromechatronics and Human Science (HMS 2000), Nagoya, Japan, October 22-25 (2000)Google Scholar
  14. 14.
    Woern, H., Schmoeckel, F., Buerkle, A., Samitier, J., Puig-Vidal, M., Johansson, S., Simu, U., Meyer, J.-U.: Biehl, Margit From decimeter- to centimeter-sized mobile microrobots – the development of the MINIMAN system. In: SPIE’s Int. Symp. on Intelligent Systems and Advanced Manufacturing, Conference on Microrobotics and Microassembly, Boston, MA, USA, October 28-November 2 (2001)Google Scholar
  15. 15.
    Buerkle, A., Schmoeckel, F., Kiefer, M., Amavasai, B.P., Caparrelli, F., Selvan, A.N., Travis, J.R.: Vision-based closed-loop control of mobile microrobots for micro handling. In: tasks SPIE’s Int. Symp. on Intelligent Systems and Advanced Manufacturing, Conference on Microrobotics and Microassembly, Boston, MA, USA, October 28-November 2, pp. 187–198 (2001)Google Scholar
  16. 16.
    Schmick, l.: Scenarios for the robot swarm. Internal Report of I-Swarm Project, University of Graz, Austria, IZG (May 2004)Google Scholar
  17. 17.
    Payton, D., Daily, M., Estowski, R., et al.: Pheromone Robotics. Autonomous Robots 11, 319–324 (2001)zbMATHCrossRefGoogle Scholar
  18. 18.
    Kazama, T., Sugawara, K., Watanabe, T.: Collecting Behavior of Interacting Robots with Virtual Phero-mone. In: Proc. of the 7th International Symposium on Distributed Autonomous Robotic Systems (DARS 2004), Toulouse, France, June 23-25, pp. 331–340 (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Jörg Seyfried
    • 1
  • Marc Szymanski
    • 1
  • Natalie Bender
    • 1
  • Ramon Estaña
    • 1
  • Michael Thiel
    • 1
  • Heinz Wörn
    • 1
  1. 1.Institute for Process Control and Robotics (IPR)Universität KarlsruheKarlsruheGermany

Personalised recommendations