Pheromone Robotics and the Logic of Virtual Pheromones

  • David Payton
  • Regina Estkowski
  • Mike Howard
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3342)


Using the biologically inspired notion of ‘virtual pheromone’ we describe how a robot swarm can become a distributed computing mesh embedded within the environment, while simultaneously acting as a physical embodiment of the user interface. By virtue of this simple peer-to-peer messaging scheme, many coordinated activities can be accomplished without centralized control.


Augmented Reality Defense Advance Research Project Agency Robot Swarm Distribute Sensor Network Distribute Resource Allocation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aron, S., Deneubourg, J., Goss, S., Pasteels, J.: Functional Self-Organization Illustrated by Inter-Nest Traffic in Ants: The Case of the Argentine Ant. In: Alt, W., Hoffman, G. (eds.) Biological Motion, pp. 533–547. Springer, Berlin (1990)Google Scholar
  2. 2.
    Azuma, R., Hoff, B., Neely III, H., Sarfaty, R.: A Motion-Stabilized Outdoor Augmented Reality System. In: Proceedings of IEEE VR 1999, Houston, TX, March 13-17, pp. 252–259 (1999)Google Scholar
  3. 3.
    Beckers, R., Holland, O.E., Deneubourg, J.: From local actions to global tasks: Stigmergy and collective robotics. In: Brooks, R., Maes, P. (eds.) Artificial Life IV, Proceedings of the Fourth International Workshop on the Synthesis and Simulation of Living Systems. MIT Press, Cambridge (1994)Google Scholar
  4. 4.
    Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm Intelligence: From Natural to Artificial Systems. Oxford University Press, New York (1999)zbMATHGoogle Scholar
  5. 5.
    Daily, M., Cho, Y., Martin, K., Payton, D.: World Embedded Interfaces for Human- Robot Interaction. In: Proceedings of the 36th Annual Hawaii International Conference on System Sciences, HICSS 2003 (2003)Google Scholar
  6. 6.
    Deneubourg, J., Goss, S.: Collective Patterns and Decision-Making. Ethology, Ecology, and Evolution 1, 295–311 (1984)CrossRefGoogle Scholar
  7. 7.
    Dijkstra, E.W.: A Note on Two Problems in Connection with Graph Theory. Numerische Mathematik 1, 269–271 (1959)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Dorigo, M., Maniezzo, V., Colorni, A.: Ant System: optimization by a colony of cooperating agents. IEEE Transactions on Systems, Man, and Cybernetics– Part B 26(2), 29–41 (1996)CrossRefGoogle Scholar
  9. 9.
    Flynn, A.M.: Gnat Robots (And How They Will Change Robotics). In: Proceedings of the IEEE Microrobots and Teleoperators Workshop, Hyannis, MA, November 9-11, p. 34 (1987); Also appeared in AI Expert, (December 1987)Google Scholar
  10. 10.
    Gage, D.W.: Command Control for Many-Robot Systems. In: The Nineteenth Annual AUVS Technical Symposium (AUVS 1991), Huntsville A L, June 22-24, 10(4), 28–34 (1992) Reprinted in Unmanned Systems MagazineGoogle Scholar
  11. 11.
    Goss, S., Beckers, R., Deneubourg, J., Aron, S., Pasteels, J.: How Trail Laying and Trail Following Can Solve Foraging Problems. In: Hughes, R. (ed.) Behavioral Mechanisms of Food Selection, pp. 661–678. Springer, Heidelberg (1990)Google Scholar
  12. 12.
    Holland, O., Melhuish, C.: Stigmergy, self-organisation, and sorting in collective robotics. Artificial Life 5(2) (2000)Google Scholar
  13. 13.
    Intanagonwiwat, C., Govindan, R., Estrin, D.: Directed Diffusion: A Scalable and Robust Communication Paradigm for Sensor Networks. In: Proceedings of the Sixth Annual International Conference on Mobile Computing and Networks (Mobicom 2000), Boston, Massachusetts (August 2000)Google Scholar
  14. 14.
    Kube, C., Zhang, R.: Collective Robotics: From Social Insects to Robots. Adaptive Behavior 2, 189–218 (1994)CrossRefGoogle Scholar
  15. 15.
    Lewis, M.A., Bekey, G.A.: The Behavioral Self-Organization of Nanorobots Using Local Rules. In: Proceedings of the 1992 IEEE/RSJ International Conference on Intelligent Robots and Systems, Raleigh, NC, July 7-10 (1992)Google Scholar
  16. 16.
    McLurkin, J.: Algorithms for distributed sensor networks. Masters Thesis for Electrical Engineering at the Univeristy of California, Berkeley (December 1999)Google Scholar
  17. 17.
    Mitchell, J.S.B., Payton, D., Keirsey, D.: Planning and Reasoning for Autonomous Vehicle Control. International Journal for Intelligent Systems 2 (1987)Google Scholar
  18. 18.
    Parunak, H., Purcell, M., O’Connell, R.: Digital pheromones for autonomous coordination of swarming UAVs. In: Proceedings of First AIAA Unmanned Aerospace Vehicles, Systems, Technologies, and Operations Conf. AIAA, Norfolk (2002)Google Scholar
  19. 19.
    Parunak, H., Brueckner, S., Odell, J.: Swarming Coordination of Multiple UAV’s for Collaborative Sensing. In: 2nd AIAA Unmanned Unlimited Systems Technologies and Operations Land and Sea Conference and Workshop & Exhibit, San Diego, CA, (September 15-18, 2003)Google Scholar
  20. 20.
    Payton, D.W.: Internalized Plans: A Representation for Action Resources. Robotics and Autonomous Systems 6(1), 89–103 (1991); Also appearing in: Maes, P.: Designing Autonomous Agents, pp. 89–103. MIT Press, Cambridge (1991)Google Scholar
  21. 21.
    Payton, D., Daily, M., Hoff, B., Howard, M., Lee, C.: Pheromone Robotics. In: SPIE Symposium on Intelligent Systems & Manufacturing, Boston, Mass, November 5–8, 2000, vol. 8 (2000)Google Scholar
  22. 22.
    Payton, D., Estkowski, R., Howard, M.: Compound Behaviors in Pheromone Robotics. Robotics and Autonomous Systems 44(3-4), 229–240 (2003)CrossRefGoogle Scholar
  23. 23.
    Reif, J., Wang, H.: Social potential fields: A distributed behavioral control for autonomous robots. In: Goldberg, K., Halperin, D., Latombe, J.-C., Wilson, R. (eds.) International Workshop on Algorithmic Foundations of Robotics (WAFR), pp. 431–459. A. K. Peters, Wellesley (1995)Google Scholar
  24. 24.
    Russell, R.: Mobile robot guidance using a short-lived heat trail. Robotica 11(5), 427–431 (1993)CrossRefGoogle Scholar
  25. 25.
    Spears, W., Gordon, D.: Using Artificial Physics to Control Agents. In: IEEE International Conference on Information, Intelligence and Systems (1999)Google Scholar
  26. 26.
    Spears, W., Spears, D., Heil, R.: A Formal Analysis of Potential Energy in a Multi-agent System. Formal Approaches to Agent-Based Systems (2004)Google Scholar
  27. 27.
    Werger, B.B., Mataric, M.J.: Robotic food chains: Externalization of state and program for minimal-agent foraging. In: Proceedings of the Fourth International Conference on Simulation of Adaptive Behavior: From Animals to Animats, vol. 4, pp. 625–634. MIT Press, Cambridge (1996)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • David Payton
    • 1
  • Regina Estkowski
    • 1
  • Mike Howard
    • 1
  1. 1.HRL LaboratoriesLLCMalibuUSA

Personalised recommendations