Advertisement

Order by Disordered Action in Swarms

  • Gerardo Beni
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3342)

Abstract

We consider swarms as systems with partial random synchronicity and look at the conditions for their convergence to a fixed point. The conditions turn out to be not much more stringent than for linear, one-step, stationary iterative schemes, either synchronous or sequential. The rate of convergence is also comparable. The main result is that swarms converge in cases when synchronous and/or sequential updating systems do not. The other significant result is that swarms can undergo a transition from non convergence to convergence as their degree of partial synchronicity diminishes, i.e., as they get more “disordered”. The production of order by disordered action appears as a basic characteristic of swarms.

Keywords

Cellular Automaton Spectral Radius Cellular Automaton Swarm Intelligence Communication Delay 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Beni, G., Wang, J.: Swarm Intelligence. In: Proc. 7th Ann. Meeting of the Robotics Society of Japan (in Japanese), pp. 425–428 (1989)Google Scholar
  2. 2.
    Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm Intelligence: From Natural to Artificial Systems. Oxford Univ. Press, New York (1999)zbMATHGoogle Scholar
  3. 3.
    Kennedy, J., Eberhart, R.C.: Swarm Intelligence. Morgan Kauffman, San Mateo (2001)Google Scholar
  4. 4.
    Parrish, J.K., Hamner, W.M. (eds.): Animal Groups in Three Dimensions. Cambridge University Press, Cambridge (1997)Google Scholar
  5. 5.
    Camazine, S., Deneubourg, J.-L., Franks, N.R., Sneyd, J., Theraulaz, G., Bonabeau, E.: Self-Organization in Biological Systems. Princeton Univ. Press, Princeton (2001)Google Scholar
  6. 6.
    Liu, Y., Passino, K.M., Polycarpou, M.M.: Stability analysis of one-dimensional asynchronous swarms. In: Proc. Amer. Contr.Conf., Arlington, VA, pp. 716–721 (2001)Google Scholar
  7. 7.
    Liu, Y., Passino, K.M., Polycarpou, M.M.: Stability analysis of one-dimensional asynchronous mobile swarms. In: Proc.Conf. Decision Contr., Orlando, FL, pp. 1077–1082 (2001)Google Scholar
  8. 8.
    Liu, Y., Passino, K.M., Polycarpou, M.M.: Stability analysis of one-dimensional asynchronous swarms. IEEE Trans. Automat. Contr. 48, 1848–1854 (2003)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Gazi, V., Passino, K.M.: Stability of a one-dimensional discrete-time asynchronous swarm. In: Proc.Joint IEEE Int. Symp. Intell. Contr./IEEE Conf. Contr.Appl., Mexico City, Mexico, pp. 19–24 (2001)Google Scholar
  10. 10.
    Gazi, V., Passino, K.M.: Stability Analysis of Social Foraging Swarms. IEEE Trans.Syst. Man and Cybern. B 34, 539–557 (2004)CrossRefGoogle Scholar
  11. 11.
    Liang, P., Beni, G.: Robotic Morphogenesis. In: Proc. Int. Conf. Robotics and Automation, vol. 2, pp. 2175–2180 (1995)Google Scholar
  12. 12.
    Turing, A.M.: The Chemical Basis for Morphogenesis. Phil. Trans. Royal Soc. London B 237, 37–72 (1952)CrossRefGoogle Scholar
  13. 13.
    Beni, G.: Research Perspectives in Swarm Intelligence: the reconfiguration problem. In: Proc. Int. Symposium on System Life, Tokyo, Japan, July 21-22 (1997)Google Scholar
  14. 14.
    Beni, G.: Distributed Robotic Systems and Swarm Intelligence. Journal of the Robot Society of Japan (in Japanese) 10, 31–37 (1992)Google Scholar
  15. 15.
    Beni, G., Hackwood, S.: Stationary Waves in Cyclic Swarms. In: Proc. IEEE Int. Symposium on Intelligent Control, Glasgow, pp. 234–242 (1992)Google Scholar
  16. 16.
    Beni, G., Liang, P.: Pattern Reconfiguration in Swarms-Convergence of a Distributed Asynchronous and Bounded Iterative Algorithm. IEEE Trans. Robotics and Autom. 12, 485–490 (1996)CrossRefGoogle Scholar
  17. 17.
    Axelsson, O.: Iterative Solution Methods. Cambridge University Press, Cambridge (1994)zbMATHGoogle Scholar
  18. 18.
    Bertsekas, D.P., Tsitsiklis, J.N.: Parallel and Distributed Computation, Englewood Cliffs, N.J. (1999)Google Scholar
  19. 19.
    Huang, Q., Beni, G.: Stationary Waves in 2 Dimensional Cyclic Swarms. In: IEEE/TSJ International Conference on Intelligent Robots and Systems, Yokohama, Japan, pp. 433–440 (1993) Google Scholar
  20. 20.
    Young, D.M.: Iterative Solutions of Large Linear Systems. Academic Press, London (1971)Google Scholar
  21. 21.
    Stoer, J., Bulirsch, R.: Introduction to Numerical Analysis, 2nd edn. Springer, Heidelberg (1971)Google Scholar
  22. 22.
    Tel, G.: Introduction to Distributed Algorithms. Cambridge University Press, Cambridge (1994)zbMATHCrossRefGoogle Scholar
  23. 23.
    Barnsley, M.: Fractals Everywhere. Academic Press, New York (1988)zbMATHGoogle Scholar
  24. 24.
    Elton, J.: An Ergodic Theorem for Iterated Maps. Journal of Ergodic Theory and Dynamical Systems 7, 481–488 (1987)zbMATHMathSciNetGoogle Scholar
  25. 25.
    Wolfram, S.: A New Kind of Science. p. 591 Wolfram Media,(2002)Google Scholar
  26. 26.
    Schonfisch, B., de Roos, A.: Synchronous and Asynchronous Updating in Cellular Automata. Biosystems 51, 123–143 (1999)CrossRefGoogle Scholar
  27. 27.
    Bersini, H., Detours, V.: Asynchrony induces stability in cellular automata based models. In: Brooks, R.A., Maes, P. (eds.) Artificial Life IV, pp. 382–387. MIT Press, MA (1994)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Gerardo Beni
    • 1
  1. 1.Department of Electrical EngineeringUniversity of CaliforniaRiversideUSA

Personalised recommendations